Меню Рубрики

Антибиотики группы левомицетина классификация

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Антибиотики это группа природных или полусинтетических органических веществ, способных разрушать микробы или подавлять их размножение. На данный момент известно множество различных видов антибиотиков, наделенных различными свойствами. Знание этих свойств является основой правильного лечения антибиотиками. Индивидуальные качества и действие антибиотика главным образом зависит от его химической структуры. В этой статье мы расскажем о наиболее известных группах антибиотиках, покажем механизм их работы, спектр действия, возможности применения для лечения различных инфекций.

Группы антибиотиков
Антибиотики это вещества природного или полусинтетического происхождения. Получают антибиотики путем экстрагирования их из колоний грибков, бактерий, тканей растений или животных. В некоторых случаях исходную молекулу подвергают дополнительным химическим модификациям с целью улучшить определенные свойства антибиотика (полусинтетические антибиотики).

На данный момент существует огромное число всевозможных антибиотиков. Правда, в медицине используется лишь немногие из них, другие, из-за повышенной токсичности, не могут быть использованы для лечения инфекционных болезней у людей. Чрезвычайное разнообразие антибиотиков послужило причиной создания классификации и разделения антибиотиков на группы. При этом внутри группы собраны антибиотики со схожей химической структурой (происходящие из одной и той же молекулы сырья) и действием.

Ниже мы рассмотрим основные группы известных на сегодняшний день антибиотиков:
Бета-лактамные антибиотики
Группа бета-лактамных антибиотиков включает две большие подгруппы известнейших антибиотиков: пенициллины и цефалоспорины, имеющих схожую химическую структуру.

Важным и полезным свойством пенициллинов является их способность проникать внутрь клеток нашего организма. Это свойство пенициллинов позволяет лечить инфекционные болезни, возбудитель которых «прячется» внутри клеток нашего организма (например, гонорея). Антибиотики из группы пенициллина обладают повышенной избирательностью и потому практически не влияют на организм человека, принимающего лечение.

К недостаткам пенициллинов можно отнести их быстрое выведение из организма и развитие резистентности бактерий по отношению к этому классу антибиотиков.

Биосинтетические пенициллины получают напрямую из колоний плесневых грибков. Наиболее известными биосинтетическими пенициллинами являются бензилпенициллин и феноксиметилпенициллин. Эти антибиотики используют для лечения ангины, скарлатины, пневмонии, раневых инфекций, гонореи, сифилиса.

Полусинтетические пенициллины получаются на основе биосинтетических пенициллинов путей присоединения различных химических групп. На данный момент существует большое количество полусинтетический пенициллинов: амоксициллин, ампициллин, карбенициллин, азлоциллин.

Важным преимуществом некоторых антибиотиков из группы полусинтетических пенициллинов является их активность по отношению к пенициллинустойстойчивым бактериям (бактерии, разрушающие биосинтетические пенициллины). Благодаря этому полусинтетические пенициллины обладают более широким спектром действия и потому могут использоваться в лечении самых разнообразных бактериальных инфекций.

Основные побочные реакции, связанные с применением пенициллинов носят аллергический характер и иногда являются причиной отказа от использования этих препаратов.

Цефалоспорины также относятся к группе бета-лактамных антибиотиков и обладают структурой, схожей со структурой пенициллинов. По этой причине некоторые побочные эффекты их двух групп антибиотиков совпадают (аллергия).

Цефалоспорины обладают высокой активностью по отношению к широкому спектру различных микробов и потому используются в лечении многих инфекционных болезней. Важным преимуществом антибиотиков из группы цефалоспоринов является их активность по отношению к микробам устойчивым к действию пенициллинов (пенициллинустойчивые бактерий).

Существует несколько поколений цефалоспоринов:
Цефалоспорины I поколения (Цефалотин, Цефалексин, Цефазолин) активны по отношению большого количества бактерий и используются для лечения различных инфекций дыхательных путей, мочевыделительной системы, для профилактики постоперационных осложнений. Антибиотики этой группы, как правило, хорошо переносятся и не вызывают серьезных побочных реакций.

Цефалоспорины II поколения (Цефомандол, Цефуроксим) обладают высокой активностью по отношению к бактериям, населяющим желудочно-кишечный тракт, и потому могут быть использованы для лечения различных кишечных инфекций. Также эти антибиотики используются для лечения инфекций дыхательных и желчевыводящих путей. Основные побочные реакции связаны с возникновением аллергии и нарушений работы желудочно-кишечного тракта.

Цефалоспорины III поколения (Цефоперазон, Цефотаксим, Цефтриаксон) новые препараты, обладающие высокой активностью по отношению к широкому спектру бактерий. Преимуществом этих препаратов является их активность по отношению к бактериям нечувствительным к действию других цефалоспоринов или пенициллинов и способность длительной задержки в организме. Используют эти антибиотики для лечения тяжелых инфекций не поддающихся лечению другими антибиотиками. Побочные эффекты этой группы антибиотиков связаны с нарушением состава микрофлоры кишечника или возникновением аллергических реакций.

Макролиды это группа антибиотиков со сложной циклической структурой. Наиболее известные представители антибиотиков из группы макролидов это Эритромицин, Азитромицин, Рокситромицин.

Действие антибиотиков макролидов на бактерии бактериостатическое – антибиотики блокируют структуры бактерий, синтезирующие белки, в результате чего микробы теряют способность размножаться и расти.

Макролиды активны по отношению ко многим бактериям, однако самым замечательным свойством макролидов, пожалуй, является их способность проникать внутрь клеток нашего организма и разрушать микробы, не имеющие клеточной стенки. К таким микробам относятся хламидии и риккетсии – возбудители атипичной пневмонии, урогенитального хламидиоза и других болезней, неподдающихся лечению другими антибиотиками.

Другой важной особенностью макролидов является их относительная безопасность и возможность проведения длительного лечения, хотя современные программы лечения с использованием макролидов предусматривают ультракороткие курсы длительностью в три дня.

Основные направления использования макролидов это лечения инфекций, вызванных внутриклеточными паразитами, лечение больных с аллергией на пенициллины и цефалоспорины, лечение детей раннего возраста, беременных женщин и кормящих матерей.

Наиболее известными антибиотиками из группы тетрациклинов являются Тетрациклин, Доксициклин, Окситетрациклин, Метациклин. Действие антибиотиков из группы тетрациклинов бактериостатическое. Также как и макролиды тетрациклины способны блокировать синтез белков в клетках бактерий, однако, в отличие от макролидов, тетрациклины обладают меньшей избирательностью и потому в больших дозах или при длительном лечении могут тормозить синтез белков в клетках организма человека. В то же время тетрациклины остаются незаменимыми «помощниками» в лечении многих инфекций. Основные направления использования антибиотиков из группы тетрациклинов это лечение инфекций дыхательных и мочевыводящих путей, лечения тяжелых инфекций типа сибирской язвы, туляремии, бруцеллеза и пр.

Несмотря на относительную безопасность, при длительном использовании тетрациклины могут быть причиной возникновения тяжелых побочных эффектов: гепатит, поражение скелета и зубов (тетрациклины противопоказаны детям до 14 лет), пороки развития (противопоказание для использования во время беременности), аллергия.

Широкое применение получили мази содержащие тетрациклин. Применяют для локального лечения бактериальных инфекций кожи и слизистых оболочек.

Аминогликозиды это группа антибиотиков, к которой относятся такие препараты как Гентамицин, Мономицин, Стрептомицин, Неомицин. Спектр действия аминогликозидов чрезвычайно широк и включает даже возбудителей туберкулеза (Стрептомицин).

Аминогликозиды используются для лечения тяжелых инфекционных процессов, связанных с массивным распространением инфекции: сепсис (заражение крови), перитониты. Также Аминогликозиды используются для локального лечения ран и ожогов.

Основным недостатком аминогликозидов является их высокая токсичность. Антибиотики из этой группы обладают нефротоксичностью (поражение почек), гепатотоксичностью (поражение печени), ототоксичностью (могут вызвать глухоту). По этой причине аминогликозиды должны использоваться только по жизненным показаниям, когда являются единственной возможностью лечения и не могут быть заменены другими препаратами.

Левомицетин (Хлорамфеникол) угнетает синтез бактериальных белков, а в больших дозах вызывает бактерицидный эффект. Левомицетин обладает широким спектром действия, однако его использование ограничено из-за риска развития серьезных осложнений. Наибольшая опасность, связанная с использованием антибиотика Хлорамфеникола заключается в поражении костного мозга, вырабатывающего клетки крови.

Противогрибковые антибиотики это группа химических веществ, способных разрушать мембрану клеток микроскопических грибков, вызывая их гибель.

Наиболее известными представителями этой группы являются антибиотики Нистатин, Натамицин, Леворин. Использование этих препаратов в наше время заметно ограничено в связи с малой эффективностью и высокой частотой возникновения побочных эффектов. Противогрибковые антибиотики постепенно вытесняются высокоэффективными синтетическими противогрибковыми препаратами.

Библиография:

  1. И.М.Абдуллин Антибиотики в клинической практике, Саламат, 1997
  2. Катцунга Б.Г Базисная и клиническая фармакология, Бином;СПб.:Нев.Диалект, 2000.

Автор: Пашков М.К. Координатор проекта по контенту.

источник

Хлорамфеникол (Choramphenicol). Синоним Левомицетин. Вы­делен в 1947 г. из культурной жидкости Streptococcus venezuelae. В настоящее время получают синтетическим путем.

Кристаллическое, горькое на вкус вещество, плохо раствори­мое в воде и хорошо — в этиловом спирте.

В группу хлорамфеникола входят левомицетин, левомицетина стеарат, левомицетина сукцинат растворимый, левовинизоль, синто­мицин.

Относится к антибиотикам с широким противомикробным спектром действия. Все препараты этой группы активны в отно­шении многих видов грамположительных и грамотрицательных микроорганизмов, риккетсий, спирохет, хламидий, а также эше-рихий, клебсиелл, протея и др. Они бактериостатически действу­ют на сальмонелл, менингококки, гонококки и др. Малочувстви­тельны к ним кислотоустойчивые бактерии, в частности возбуди­тель туберкулеза, клостридии и др.

Бактериостатически действует хлорамфеникол на чувствитель­ные к нему микроорганизмы, находящиеся как в стадии размно­жения, так и в состояния покоя. Однако в стадии активного раз­множения микробы более чувствительны. Губительны для пато­генных микроорганизмов в клетках тканей и вне их.

Устойчивые штаммы в производственных условиях образуются медленно и в основном за счет менее чувствительных видов пато­генных микроорганизмов. Усилить антимикробное действие мож­но путем сочетания препаратов хлорамфеникола с тетрациклинами, макролидами. У левомицетинустойчивых штаммов сохраняет­ся устойчивость к другим антибиотикам.

Механизм противомикробного действия производных хло­рамфеникола в основном состоит в подавлении биосинтеза бел­ков. Этот процесс развивается на стадии переноса аминокислот от аминоацил-иРНК на рибосомы. Полагают, что хлорамфени­кол ингибирует ферментную систему, катализирующую образо­вание пептидной связи в рибосомальной системе белкового син­теза.

левомицетина как химического вещества проявляются только в результате одновременного и соответствующего его концентрации взаимодействия с комплементарными молекулами (рецепторами) макроорганизма и микроорганизма, локализованного в клетках и за их пределами.

Левомицетин и его производные выпускают преимущественно для введения внутрь (порошки, таблетки, капсулы), во многих формах (мазь, линимент, аэрозоль, раствор) применяют наружно и только одно соединение (левомицетина сукцинат) вводят парен­терально.

При наружном применении в любой лекарственной форме ле­вомицетин действует противомикробно. Одновременно с подавле­нием патогенной или условно-патогенной микрофлоры в патоло­гическом очаге улучшаются регенеративные процессы.

Левомицетин и его производные очень хорошо всасываются (на 90 %) из желудочно-кишечного тракта при пероральном и ректальном введениях. При ректальном введении уже через 30 мин антибиотик выявляется в крови, а через 2—3 ч создается максимальная концентрация в организме. Оптимальная проти-вомикробная концентрация в тканях организма поддерживается 8—12 ч, после чего уровень антибиотика быстро снижается, и че­рез 24 ч обнаруживаются только следы. Выведение из организма с мочой происходит в ходе фильтрационной функции клубочков (табл. 13).

В организме распределяется неравномерно, хотя обладает хорошей диффузией в различные органы и ткани. Хорошо диф­фундирует в перитонеальную, плевральную и синовиальные по­лости, где их концентрация достигает 30—50 % уровня в крови. Хорошо проникает через гистогематические барьеры — гемато-энцефалический, плацентарный, офтальмический, что обеспе­чивает содержание антибиотика в ликворе в пределах 30—50 % уровня в крови, а также высокую концентрацию в крови плода и амниотической жидкости. Во всех структурах глаза, кроме хрусталика, левомицетин выявляется в высоких концентрациях. В наиболее высоких количествах и более продолжительное вре­мя регистрируется в почках, печени и в меньших — в нервной ткани.

Из организма выделяется в основном с мочой, молоком и с яйцом. С калом выводится очень мало в связи с разрушением его ферментами кишечной микрофлоры. В организме животного подвергается биотрансформации. Из 90 % левомицетина, выво­димого с мочой, 80 % выводится в измененном и только 10 % — в неизмененном биологически активном состоянии. С каловыми массами его выводится не более 3 %. В молоке лактирующих жи­вотных содержится в разной концентрации (0—50 % от уровня в крови).

Из крови молекулы левомицетина диффундируют в межкле­точные пространства, а затем через цитоплазматическую мембра­ну проникают в клетки и дальше в органоиды. Степень диффу­зии в клетке зависит от компетентности клеток органов и компле­ментарное внутриклеточных макромолекул (рецепторов). Фар-макодинамическая и химиотерапевтическая эффективности левомицетина как химического вещества проявляются только в результате одновременного и соответствующего его концентрации взаимодействия с комплементарными молекулами (рецепторами) макроорганизма и микроорганизма, локализованного в клетках и за их пределами.

Читайте также:  Левомицетина гидрохлорид инструкция по применению

Взаимодействие молекул левомицетина с наиболее комплемен­тарными макромолекулами макро- и микроорганизма сопровож­дается образованием комплексов, вследствие чего изменяются внутриклеточные биохимические реакции, приводящие в итоге к подавлению биосинтеза белка в клетке как макро-, так и микроор­ганизма, чувствительного к данному антибиотику. Подавление биосинтеза в микроорганизме вызывает бактериостатическое или бактерицидное действие с последующим выведением его за преде­лы макроорганизма.

Внутриклеточный комплекс изменений в метаболизме живот­ных преимущественно каталитической направленности опреде­ляется концентрацией левомицетина в клетках и органоидах. В средних и тем более в больших дозах происходит ингибирование биосинтеза структурных и динамических белков, в частности фер­ментов, гормонов, антител (у-глобулинов), гемоглобина, компо­нентов, необходимых для внутриклеточного самообновления и размножения клеток, следствием чего является пониженный ин­тегральный функциональный ответ соответствующих клеток и ор­ганов.

Внутриклеточный метаболизм белков усугубляется нарушени­ем соотношения между отдельными свободными аминокислотами в крови. В частности, в крови повышается уровень аланина и ли­зина, а также изменяется метаболизм фенилаланина с одновре­менным повышением выведения из организма гликокола, проли-на, гистидина, фенилаланина.

Наиболее выраженные глубокие негативные изменения имеют место в гемопоэтической функции костного мозга, следствием чего являются лейкопения, агранулоцитоз, пластическая и гипо-пластическая анемии. Считают, что угнетающее действие левоми­цетина на кроветворение обусловлено его ингибирующим влия­нием на биосинтез белков, в том числе и гемоглобина. При этом установлено, что пролиферирующие стволовые и другие клетки более чувствительны к действию данного антибиотика. В экспери­ментах определено, что под действием левомицетина снижаются уровень утилизации железа и его содержание в крови, ингибиру-ется каталитическая активность ферментов, участвующих в био­синтезе гемоглобина с параллельным уменьшением его уровня в крови; происходит вакуолизация эритробластов, развиваются лей­копения и тромбоцитопения. Апластическая анемия развивается только при 1—2-недельной левомицетинотерапии.

Левомицетин в малых дозах (5—10мг/кг) усиливает высшую нервную деятельность: укорачивает латентный период на условные и безусловные раздражители; усиливает нейрогуморальную фазу желудочной секреции; улучшает дифференцировку положи­тельных и отрицательных условных раздражителей. Под действи­ем больших доз (50—100 мг/кг и тем более 200—500 мг/кг) в выс­шей нервной деятельности изменения развиваются в полярном направлении с развитием даже фазовых явлений. Под действием больших доз нарушается координация движений и даже понижа­ются зрение и слух, что указывает на серьезные морфофункцио-нальные изменения в соответствующих центрах.

Под влиянием малых доз усиливается гормонообразование в коре надпочечников и щитовидной желез, тогда как этот же анти­биотик в повышенных дозах снижает биосинтез гормонов в этих железах с одновременным уменьшением уровня аскорбиновой кислоты в надпочечниках.

Левомицетин обладает выраженным раздражающим действием на рецепторы слизистой желудочно-кишечного канала, особенно при его пероральном введении. Этот эффект может породить из­менения не только в направлении усиления всех физиологических функций пищеварительной системы при введении в малых дозах, а в повышенных дозах антибиотик может вызвать анорексальный синдром, проктит, понос и др.

Таким образом, левомицетин и его производные обладают ге-мотропным и энтеротропным действием.

Высокоэффективны левомицетин и его производные при коли-бактериозе, сальмонеллезе, пастереллезе, паратифе, дизентерии, диспепсии, гастроэнтерите, патологии мочевыводящих путей, ва­гинитах, инфицированных ранах, язвах, ожогах, пролежнях, гной­но-воспалительных процессах кожи и слизистых оболочек; конъ­юнктивитах.

Каждая лекарственная форма и каждый препарат назначают выборочно с обеспечением наилучшей биодоступности и лучшего химиотерапевтического эффекта (см. табл. 13).

Урсофеникол (Ursophenicol). Прозрачный, желтоватого цвета раствор, содержащий 20 % хлорамфеникола (левомицетина).

Выпускают во флаконах из темного стекла по 50 и 500 мл.

Вводят подкожно. Хорошо всасывается с наличием максималь­ной концентрации в крови через 3 ч и сохранением противомик-робного уровня в течение 12 ч.

Обладает широким противомикробным спектром действия с проявлением бактериостатического эффекта. К нему чувствитель­ны микроорганизмы, резистентные к пенициллину, стрептомици­ну и сульфаниламидам.

Дозы подкожно (мл/10 кг): крупному и мелкому рогатому ско­ту — 0,75; свиньям — 1,5 2 раза в сутки в течение 3—4 сут.

Хроницин (Chronicin). Раствор, содержащий в 1 мл хлорамфени­кола 150 мг и тримекаина 10 мг.

Выпускают во флаконах по 50 мл.

Вводят внутримышечно. Всасывается хорошо и проникает во все органы и ткани, где метаболизируется; терапевтическая кон­центрация в крови сохраняется в течение 12 ч.

К нему чувствительны бактерии, риккетсии, спирохеты, неко­торые крупные вирусы. Высокочувствительны шигеллы, сальмо­неллы, кишечная палочка.

Применяют при септицемии, бронхопневмонии, ларинготра-хеите, перитоните, плеврите, остром метрите и др.

Дозы внутримышечно: крупному рогатому скоту —2,5— 7 мл/100 кг; лошадям —5,5—8 мл/100 кг; телятам, овцам, козам — 0,5—0,8 мл/10 кг; поросятам, собакам, кошкам — 0,15—2 мл/1 кг; птице — 0,25—0,9 мл/1 кг.

Дата добавления: 2014-01-04 ; Просмотров: 3165 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Продуцентом левомицетина является микроорганизм Streptomyces venezuelae, выделенный в 1947 г. из почвы Венесуэлы. Тогда же левомицетин был успешно применен для лечения больных брюшным тифом во время эпидемии в Боливии и больных сыпным тифом в Малайзии. С 1948 г. выпускают синтетический препарат левомицетина. В настоящее время применение этого антибиотика ограничено из-за выраженного токсического влияния на кроветворение с летальными исходами.

Наиболее часто используют следующие препараты этой группы: левомицетин-основание, левомицетин-стеарат, левомицетин-палминат, левомицетин-сукцинат.

Левомицетин представляет собой производное нитробензола и имеет уникальное строение в группе антибиотиков. Биологической активностью обладает только l-изомер.

Левомицетин оказывает бактериостатическое действие на большинство микроорганизмов, является бактерицидным антибиотиком в отношении менингококков, пневмококков и гемофильной палочки. Он подавляет 70% штаммов золотистого стафилококка, стрептококки, гонококки, менингококки, клостридии, возбудители сибирской язвы, дифтерии, чумы, коклюша, сальмонеллы, шигеллы, гемофильную палочку, бруцеллы, холерный вибрион, бактероиды, легионеллы, спирохеты, микоплазмы, риккетсии и хламидии., активен протьив 90% штаммов протея, 75% штаммов клебсиелл, 50% штаммов энтеробактера, 33% штаммов серраций.

Левомицетин поступает в цитоплазму микроорганизмов облегченной диффузией, нарушая синтез белка у микроорганизмов.

Резистетность к левомицетину обусловлена продукцией ацилтрансферазы, так как ацилированный антибиотик не способен связываться с рибосомами.

При приеме внутрь основание левомицетина хорошо всасывается (75 – 90%), создавая пик концентрации в крови через 2 – 3 ч. Пища не влияет на биодоступность. Для маскирования чрезвычайно горького вкуса левомицетин используют в виде эфира с пальмитиновой кислотой. В двенадцатиперстной кишке левомицетина пальмитат быстро подвергается гидролизу липазой поджелудочной железы. В мышцы и вену вводят растворимый в воде препарат – левомицетина сукцинат натрия. Гидролиз этого эфира катализируют гидролазы печени, почек и легких. 30% левомицетина сукцината натрия выводится с мочой в неизмененном виде, до гидролиза.

Во время возникновения максимальной концентрации в крови (в среднем через 1 час) величина при энтеральном и парентеральном пути введения могут быть равны, а в некоторых случаях даже больше при приеме внутрь. Поэтому назначение левомицетина внутрь предпочтительнее, чем внутривенное введение. Однако при менингите, когда из-за рвоты, судорог или бессознательного состояния прием антибиотика внутрь невохможен, начинают с парентерального введения, но как можно скорее переходят на назнчение внутрь.

Левомицетин поступает во все органы и ткани, проникает через плацентарный барьер и в грудное молоко. Его концентрация в спинномозговой жидкости составляет 60% от уровня в крови. При менингите проницаемость гематоэнцефалического барьера для левомицетина увеличивается. В крови 60 – 80% молекул антибиотика связано с белками.

В печени левомицетин конъюгирует с глюкуроновой кислотой. Глюкуронид и неизмененный препарат (5 – 10%) элиминируются почками. За сутки с мочой выводится 75 – 80% принятой дозы. При циррозе печени необходимо снижать дозу левомицетина из-за замедления метаболизма. Индукторы биотрансформации – фенобарбитал, дифенин и рифампицин ускоряют его глюкуронирование. Период полуэлиминации левомицетина – 4 ч. Моторинг концентрации этого препарата в крови требуется проводить у новорожденных детей, младенцев, при заболеваниях печени и почек, гипопротеинемии, назначении индукторов метаболизма.

Применение левомицетина оправдано только в тех случаях, когда успех терапии инфекционных заболеваний выше риска развития побочных эффектов (табл. 9). Препарат назначают внутрь за 30 мин до еды. В мышцы и вену вводит левомицетина сукцинат натрия: взрослым и детям старше 1 мес. На кожу наносят 5 – 10% линимент синтомицина (смесь равных количество левомицетина и неактивного декстрамицетина). При гнойно-воспалительных заболеваниях глаз применяют 0,25% раствор левомицетина в глазных каплях или 1% линимент синтомицина.

Показания к применению левомицетина

Левомицетин (внутрь по 1 г через 4 ч в течение 6 нед) назначают как альтернативный препарат при неэффективности фторхинолонов, цефтриаксона, ко-тримосазола и ампициллина; сальмонеллы исчезают из крови через несколько часов, лихорадка и другие клинические симптомы проходят спустя 3 – 5 дней, хотя даже в период выздоровления сохраняется опасность кишечного кровотечения и перфорации кишечника; левомицетин не влияет на частоту и продолжительность носительства сальмонелл

Менингит, вызванный гемофильной палочкой

Левомицетина сукцинат натрия вводят в вену при неэффективности цефотаксима и цефтриаксона; суточная доза для детей 50 – 75 мг/кг в 4 введения на протяжении 2 нед.

Менингит, вызванный менингококком или пневмококком

Левомицетин используют при аллергии на антибиотики группы β-лактамов

Инфекции, вызванные бактероидами

Левомицетин совместно с антибиотиками группы пенициллина возможно применять взамен метронидазола или клиндамицина при абсцессе головного мозга и интраабдоминальном абсцессе

Левомицетин вводят в вену или принимают внутрь при гиперчувствительности к тетрациклинам, почечной недостаточности, беременности, детям до 8 лет.

Левомицетин назначают по 0,75 – 1 г через 6 ч, если противопоказан доксициклин

Наиболее опасное побочное действие левомицетина – поражение костного мозга:

— дозозависимая реакция в виде обратимой анемии, лейкопении, тромбоцитопении;

— идиосинкразия с развитием апластической анемии.

Дозозависимая гемотоксичность обусловлена нарушением в клетках эритропоэза митохондриального синтеза белка, захвата двухвалентного железа и его включения в гемм. Она возникает при концентрации левомицетина в крови 25 мкг/мл и выше. Через 5 – 7 дней терапии появляется ректикулоцитопения, снижаются количество эритроцитов и содержание гемоглобина, повышается уровень свободного железа в плазме. Вскоре присоединяются лейкопения и тромбоцитопения. Летальность – 50%. Группу риска составляют больные, получавшие несколько курсов антибиотикотерапии, а также лица с патологией печени и почек. После выздоровления сохраняется риск заболеть острым миелобластным лейкозом.

Левомицетин чаще нарушает кроветворение при приеме внутрь по сравнению с парентеральным введением. При терапии левомицетином анализ крови проводят 1 раз в 3 дня.

У новорожденных детей левомицетин через 2 – 9 дней терапии может вызывать «серый» синдром (gray baby syndrome). В первые сутки после развития этого осложнения наблюдаются тошнота, рвота, нерегулярное частое дыхание, цианоз, жидкий стул зеленоватыми массами. В последующие сутки ребенок отказывается от сосания, становится вялым. Кожа приобретает пепельно-серую окраску, температура тела снижается, возникают сердечная недостаточность, вазомоторный коллапс и метаболический ацидоз. Летальность при «сером» синдроме новорожденных достигает 40%. Его патогенез — недостаточное глюкуронирование левомицетина вследствие низкой активности глюкуронилтрансферазы печени в первые 3 – 4 недели жизни ребенка и неадекватная экскреция неконъюгированного препарата с мочой.

Среди других побочных эффектов левомицетина – горький вкус во рту, тошнота, рвота, диарея, неясное видение, парестезия. У 3 – 5% детей, страдающих муковисцедозом, левомицетин вызывает неврит зрительного нерва с атрофией ганглиозных клеток сетчатки и волокон зрительного нерва.

Гиперчувствительность к левомицетину наблюдается редко. У единичных больных возникают макулярная или везикулярная кожная сыпь, лихорадка, ангионевротический отек. Терапия левомицетином сифилиса, брюшного тифа и бруцеллеза может сопровождаться массивным бактериолизом и освобождением эндотоксинов (токсическая реакция Яриша – Герксгеймера).

Читайте также:  Левомицетина натрия сукцинат мнн

Левомицетин противопоказан при гиперчувствительности, заболеваниях печени, почек, органов кроветворения, порфирии, генетическом дефекте глюкозо-6-фосфатдегидрогеназы, псориазе, экземе, грибковых заболеваниях кожи, беременности, детям в первые месяцы жизни. На период приема левомицетина прекращают грудное вскрамливание.

источник

Под понятием инфекционных заболеваний подразумевают реакцию организма на присутствие патогенных микроорганизмов или инвазию ими органов и тканей, проявляющуюся воспалительным ответом. Для лечения применяются антимикробные препараты, избирательно действующие на эти микробы, с целью их эрадикации.
Содержание:

  • бактерии (истинные бактерии, риккетсии и хламидии, микоплазмы);
  • грибы;
  • вирусы;
  • простейшие.

Поэтому, противомикробные средства разделяют на:

  • антибактериальные;
  • противовирусные;
  • противогрибковые;
  • противопротозойные.

Важно помнить, что один препарат может обладать несколькими видами активности.

Например, Нитроксолин ® , преп. с выраженным антибактериальным и умеренным противогрибковым эффектом — называют антибиотиком. Разница между таким средством и «чистым» противогрибковым в том, что Нитроксолин ® имеет ограниченную активность по отношению к некоторым видам Candida, зато обладает выраженным эффектом в отношении бактерий, на которые противогрибковое средство не подействует вообще.

В 50-х годах двадцатого столетия Флеминг, Чейн и Флори получили Нобелевскую премию в области медицины и физиологии за открытие пенициллина. Это событие, стало настоящей революцией в фармакологии, полностью перевернув базовые подходы к лечению инфекций и существенно увеличив шансы пациента на полное и быстрое выздоровление.

С появлением антибактериальных препаратов, многие заболевания вызывавшие эпидемии, опустошавшие ранее целые страны (чума, тиф, холера), превратились из «смертного приговора» в «болезнь, эффективно поддающуюся лечению» и в настоящее время, практически, не встречаются.

Антибиотики- это вещества биологического или искусственного происхождения, способные избирательно угнетать жизнедеятельность микроорганизмов.

То есть, отличительной особенностью их действия является то, что они влияют только на прокариотическую клетку, не повреждая клетки организма. Это связано с тем, что в тканях человека нет мишени-рецептора для их действия.

Антибактериальные ср-ва назначают при инфекционно-воспалительных заболеваниях, обусловленных бактериальной этиологией возбудителя или при тяжёлых вирусных инфекциях, с целью подавления вторичной флоры.

При выборе адекватной противомикробной терапии, необходимо учитывать не только основное заболевание и чувствительность патогенных микроорганизмов, но также и возраст больного, наличие беременности, индивидуальной непереносимости компонентов препарата, сопутствующих патологий и прием преп., не сочетающихся с рекомендуемым лекарством.

Также, важно помнить, что при отсутствии клинического эффекта от терапии в течении 72 часов, производится смена лекарственного ср-ва, с учетом возможной перекрёстной устойчивости.

На тяжёлые инфекции или в целях эмпирической терапии с неуточнённым возбудителем, рекомендована комбинация разных видов антибиотиков, с учетом их совместимости.

По влиянию на болезнетворные микроорганизмы, выделяют:

  • бактериостатические — угнетающие жизнедеятельность, рост и размножение бактерий;
  • бактерицидные антибиотики — это вещества, полностью уничтожающие возбудителя, в следствие необратимого связывания с клеточной мишенью.

Однако, такое разделение, достаточно условно, так как многие антиб. могут проявлять разную активность, в зависимости от назначенной дозировки и длительности применения.

Если пациент недавно применял противомикробное средство, необходимо избегать его повторного применения, минимум, шесть месяцев — для профилактики возникновения антибиотико-резистентной флоры.

Наиболее часто наблюдается устойчивость вследствие мутации микроорганизма, сопровождающейся видоизменением мишени внутри клеток, на которую воздействуют разновидности антибиотиков.

Действующее вещество, назначенного ср-ва, проникает в бактериальную клетку, однако не может связаться с необходимой мишенью, так как нарушается принцип связывания по типу «ключ-замок». Следовательно, механизм подавления активности или уничтожения патологического агента не активируется.

Другим эффективным методом защиты от лекарств является синтез бактериями ферментов, разрушающих основные структуры антиб. Такой тип резистентности чаще всего возникает к бета-лактамам, за счёт продукции флорой бета-лактамаз.

Гораздо реже встречается повышение устойчивости, за счет уменьшения проницаемости клеточной мембраны, то есть лекарство проникает внутрь в слишком малых дозах, для оказания клинически значимого эффекта.

В качестве профилактики развития препаратоустойчивой флоры, необходимо также учитывать минимальную концентрацию подавления, выражающую количественную оценку степени и спектра действия, а также зависимость от времени и концентр. в крови.

Для дозо-зависимых средств (аминогликозиды, метронидазол) характерна зависимость эффективности действия от концентр. в крови и очаге инфекционно-воспалительного процесса.

Лекарства, зависящие от времени, требуют повторных введений в течение суток, для поддержания эффективной терапевтической концентр. в организме (все бета-лактамы, макролиды).

  • лекарства, ингибирующие синтезирование клеточной стенки бактерий (антибиот.пенициллинового ряда, все поколения цефалоспоринов, Ванкомицин ® );
  • разрушающие нормальную организацию клетки на молекулярном уровне и препятствующие нормальному функционированию мембраны бак. клеток (Полимиксин ® );
  • ср-ва, способствующие подавлению синтеза белков, тормозящие образование нуклеиновых кислот и ингибирующие синтез белка на рибосомальном уровне (препараты Хлорамфеникола, ряд тетрациклинов, макролиды, Линкомицин ® , аминогликозиды);
  • ингибит. рибонуклеиновых кислот — полимеразы и др. (Рифампицин ® , хинолы, нитроимидазолы);
  • ингибирующие процессы синтеза фолатов (сульфаниламиды, диаминопириды).

1. Природные — продукты жизнедеятельности бактерий, грибов, актиномицетов:

  • Грамицидины ® ;
  • Полимиксины;
  • Эритромицин ® ;
  • Тетрациклин ® ;
  • Бензилпенициллины;
  • Цефалоспорины и т.д.

2. Полусинтетические — производные природных антиб.:

  • Оксациллин ® ;
  • Ампициллин ® ;
  • Гентамицин ® ;
  • Рифампицин ® и т.д.

3. Синтетические, то есть, полученные в следствие химического синтеза:

Действующие преимущественно на: Антибактериальные пр. с широким спектром действ.: Противотуберкулёзные ср-ва
Грам+: Грам-:
биосинтетические пенициллины и 1-е поколение цефалоспоринов;
макролиды;
линкозамиды;
препараты
Ванкомицина ® ,
Линкомицина ® .
монобактамы;
циклич. полипептиды;
3-е пок. цефалоспоринов.
аминогликозиды;
левомицетин;
тетрациклин;
полусинтетич. пенициллины имеющие расширенный спектр (Ампициллин ® );
2-е пок. цефалоспоринов.
Стрептомицин ® ;
Рифампицин ® ;
Флоримицин ® .
Основная группа Подклассы
Бета-лактамы
1. Пенициллины Природные;
Антистафи­лококковые;
Антисинегнойные;
С расширенным спектром действ.;
Ингибиторозащищённые;
Комбинированные.
2. Цефалоспорины 4-ре поколения;
Анти-MRSA цефемы.
3. Карбапенемы
4. Монобактамы
Аминогликозиды Три поколения.
Макролиды Четырнадцати-членные;
Пятнадцати-членные (азолы);
Шестнадцати-членные.
Сульфаниламиды Короткого действ.;
Средней длительности действ.;
Длительного действ.;
Сверхдлительные;
Местные.
Хинолоны Нефторированные (1-е поколение);
Второе;
Респираторные (3-е);
Четвёртое.
Противотуберкулёзные Основной ряд;
Группа резерва.
Тетрациклины Природные;
Полусинтетические.

Не имеющие подклассов:

  • Линкозамиды (линкомицин ® , клиндамицин ® );
  • Нитрофураны;
  • Оксихинолины;
  • Хлорамфеникол (данная группа антибиотиков представлена Левомицетином ® );
  • Стрептограмины;
  • Рифамицины (Римактан ® );
  • Спектиномицин (Тробицин ® );
  • Нитроимидазолы;
  • Антифолаты;
  • Циклические пептиды;
  • Гликопептиды (ванкомицин ® и тейкопланин ® );
  • Кетолиды;
  • Диоксидин;
  • Фосфомицин (Монурал ® );
  • Фузиданы;
  • Мупироцин (Бактобан ® );
  • Оксазолидиноны;
  • Эверниномицины;
  • Глицилциклины.

Как и все бета-лактамные ср-ва, пенициллины имеют бактерицидный эффект. Они влияют на завершающий этап синтеза биополимеров, образующих клеточную стенку. В следствие блокировки синтеза пептидогликанов, за счёт действия на пенициллиносвязывающие ферменты, они вызывают гибель паталогической микробной клетки.

Низкий уровень токсичности для человека обусловлен отсутствием клеток-мишеней для антиб.

Механизмы бактериальной устойчивости к этим препаратам преодолены созданием защищенных средств, усиленных клавулановой кислотой, сульбактамом и т.д. Эти вещества подавляют действие бак. ферментов и защищают лекарственное средство от разрушения.

Далее представлены виды антибиотиков этого ряда и их классификация в таблице.

Группа По действующему веществу выделяют препар.: Названия
Феноксиметилпенициллина Метилпенициллин ®
С пролонгированным дейст.
Бензилпенициллина
прокаин
Бензилпенициллина новокаиновая соль ® .
Бензилпенициллина/ Бензилпенициллина прокаин/ Бензатин бензилпенициллин Бензициллин-3 ® . Бициллин-3 ®
Бензилпенициллина
прокаин/Бензатин
бензилпенициллин
Бензициллин-5 ® . Бициллин-5 ®
Антистафилококковые Оксациллина ® Оксациллин АКОС ® , натриевая соль Оксациллина ® .
Пенициллиназорезистентные Клоксапциллин ® , Алюклоксациллин ® .
Обладающие расширенным спектром Ампициллина ® Ампициллин ®
Амоксициллина ® Флемоксин солютаб ® , Оспамокс ® , Амоксициллин ® .
С антисинегнойной активностью Карбенициллина ® Динатриевая соль карбенициллина ® , Карфециллин ® , Кариндациллин ® .
Уриедопенициллины
Пиперациллина ® Пициллин ® , Пипрацил ®
Азлоциллина ® Натриевая соль азлоциллина ® , Секуропен ® , Мезлоциллин ® .
Ингибиторозащищённые Амоксициллина/клавуланат ® Ко-амоксиклав ® , Аугментин ® , Амоксиклав ® , Ранклав ® , Энханцин ® , Панклав ® .
Амоксициллина сульбактам ® Трифамокс ИБЛ ® .
Амлициллина/сульбактам ® Сулациллин ® , Уназин ® , Амписид ® .
Пиперациллина/тазобактам ® Тазоцин ®
Тикарциллина/клавуланат ® Тиментин ®
Комбинация пенициллинов Ампициллина/оксациллин ® Ампиокс ® .

За счёт малой токсичности, хорошей переносимости, возможности использовать беременным женщинам, а также широкого спектра действия — цефалоспорины являются наиболее часто используемыми средствами с антибактериальным действием в терапевтической практике.

Механизм воздействия на микробную клетку аналогичен пенициллинам, однако является более устойчивым к воздействию бак. ферментов.

Преп. цефалоспоринового ряда имеют высокую биодоступность и хорошую усвояемость при любом способе введения (парентеральный, пероральный). Хорошо распределяются во внутренних органах (исключение составляет предстательная железа), крови и тканях.

Создавать клинически действенные концентрации в желчи способны только Цефтриаксон ® и Цефоперазон ® .

Высокий уровень проходимости через гематоэнцефалический барьер и эффективность при воспалении мозговых оболочек, отмечают у третьего поколения.

Единственный защищенный сульбактамом цефалоспорин- Цефоперазона/сульбактам ® . Имеет расширенный спектр воздействия на флору, за счёт высокой устойчивости к влиянию бета-лактамаз.

В таблице представлены группы антибиотиков и названия основных препаратов.

Поколения Препар.: Название
1-е Цефазолинам Кефзол ® .
Цефалексина ® * Цефалексин-АКОС ® .
Цефадроксила ® * Дуроцеф ® .
2-е Цефуроксима ® Зинацеф ® , Цефурус ® .
Цефокситина ® Мефоксин ® .
Цефотетана ® Цефотетан ® .
Цефаклора ® * Цеклор ® , Верцеф ® .
Цефуроксим-аксетила ® * Зиннат ® .
3-е Цефотаксима ® Цефотаксим ® .
Цефтриаксона ® Рофецин ® .
Цефоперазона ® Медоцеф ® .
Цефтазидима ® Фортум ® , Цефтазидим ® .
Цефоперазона/сульбактама ® Сульперазон ® , Сульзонцеф ® , Бакперазон ® .
Цефдиторена ® * Спектрацеф ® .
Цефиксима ® * Супракс ® , Сорцеф ® .
Цефподоксима ® * Проксетил ® .
Цефтибутена ® * Цедекс ® .
4-е Цефепима ® Максипим ® .
Цефпирома ® Кейтен ® .
5-е Цефтобипрола ® Зефтера ® .
Цефтаролина ® Зинфоро ® .

* Имеют оральную форму выпуска.

Являются препаратами резерва и применяются для лечения тяжёлых нозокомиальных инфекций.

Высокоустойчивы к бета-лактамазам, эффективны для терапии препаратоустойчивой флоры. При жизнеугрожающих инфекционных процессах, являются первоочередными средствами для эмпирической схемы.

Выделяют преп.:

  • Дорипенема ® (Дорипрескс ® );
  • Имипенема ® (Тиенам ® );
  • Меропенема ® (Меронем ® );
  • Эртапенема ® (Инванз ® ).

Преп. имеет ограниченный спектр применения и назначается для устранения воспалительно-инфекционных процессов, ассоциированных Грам- бактериями. Эффективен в терапии инфек. процессов мочевыводящих путей, воспалительных заболеваний органов малого таза, кожи, септических состояниях.

Бактерицидное воздействие на микробы зависит от уровня концентрации сред-ва в биологических жидкостях и обусловлено тем, что аминогликозиды нарушают процессы синтеза белков на рибосомах бактерий. Имеют достаточно высокий уровень токсичности и множество побочных эффектов, однако, редко становятся причиной аллергических реакций. Практически не эффективны при пероральном приёме, за счет плохой всасываемости в желудочно-кишечном тракте.

По сравнению с бета-лактамами, уровень прохождения через тканевые барьеры намного хуже. Не имеют терапевтически значимых концентраций в костях, ликворе и секрете бронхов.

Поколения Препар.: Торг. название
1-е Канамицин ® Канамицин-АКОС ® . Канамицина мо­носульфат ® . Канамицина сульфат ®
Неомицин ® Неомицина сульфат ®
Стрептомицин ® Стрептомицина сульфат ® . Стрептомицина-хлоркальциевый комплекс ®
2-е Гентамицин ® Гентамицин ® . Гентамицин-АКОС ® . Гентамицин-К ®
Нетилмицин ® Нетромицин ®
Тобрамицин ® Тобрекс ® . Бруламицин ® . Небцин ® . Тобрамицин ®
3-е Амикацин ® Амикацин ® . Амикин ® . Селемицин ® . Хемацин ®

Обеспечивают торможение процесса роста и размножения патогенной флоры, обусловленное подавлением синтезирования белков на рибосомах клет. стенки бактерий. При увеличении дозировки, могут давать бактерицидный эффект.

Группа Препараты. Торг. название
14-чл. Кларитромицина ® Клацид ® . Кларитромицин ® . Фромилид ®
Рокситромицина ® Рулид ® . Акритроцин ® . Роксид ® . Роксит­ромицин ® . Рокситромицин Лек ®
Эритромицина ® Эомицин ® . Эритромицин ® .
15-чл.
(азалиды)
Азитромицина ® Сумамед ® , Азитрокс ® . Азитромицин ® . Хемомицин ®
16-чл. Джозамицина ® Вильпрафен ®
Мидекамицина ® Макропен ®
Спирамицина ® Ровамицин ®
Читайте также:  Левомицетина актитаб при поносе

Также, существуют комбинированные преп.:

  1. Пилобакт ® — комплексное сред-во для терапии хеликобактер пилори. Содержит в своём составе кларитромицин ® , омепразол ® и тинидазол ® .
  2. Зинерит ® – сред-во для наружного применения, с целью лечения угревой сыпи. Действующими компонентами являются эритромицин и ацетат цинка.

Угнетают процессы роста и размножения болезнетворных микроорганизмов, за счет структурного сходства с парааминобензойной кислотой, участвующей в жизнедеятельности бактерий.

Имеют высокий показатель резистентности к своему действию у многих представителей Грам-, Грам+. Применяются в составе комплексной терапии ревматоидных артритов, сохраняют хорошую противомалярийную активность, эффективны против токсоплазмы.

Классификация:

По времени действия Пример представителей группы препарат. Назв.
Короткое Сульфаниламида ® Стрептомицин ®
Среднее Сульфадиазина ® Сульфазин ®
Длительное Сульфадиметоксина ® Сульфадиметоксин ®
Сверхдлительное Сульфалена ® Сульфален ®
Комбинированные с триметопримом
Сульфометоксазола/триметоприм ® Бисептол ®
Сульфамонометоксина/триметоприм ® Сульфатон ®
Сульфаметрола/триметоприм ® Лидаприм ®

Для местного использования применяют Сульфатиазол серебра (Дермазин ® ).

За счет ингибирования ДНК-гидразы имеют бактерицидный эффект, являются концентрационнозависимыми сред-ми.

  • К первому поколению относятся нефторированные хинолоны (налидиксовая, оксолиновая и пипемидиновые кислоты);
  • Второе пок. представлено Грам- средствами (Ципрофлоксацин ® , Левофлоксацин ® и т.д.).;
  • Третье – это, так называемые, респираторные средст. (Лево- и Спарфлоксацин ® );
    Четвёртое — преп. с антианаэробной активностью (Моксифлоксацин ® ).

Тетрациклин ® , чье название было присвоено отдельной группе антиб., впервые получен химическим путем в 1952 году.

Действующие вещества группы: метациклин ® , миноциклин ® , тигециклин ® , тетрациклин ® , доксициклин ® , окситетрациклин ® .

На нашем сайте Вы можете познакомиться с большинством групп антибиотиков, полными списками входящих в них препаратов, классификациями, историей и прочей важной информацией. Для этого создан раздел «Классификация» в верхнем меню сайта.

источник

Антибиотики — это группа лекарственных средств, которые способны угнетать рост и развитие живых клеток. Наиболее часто их используют для лечения инфекционных процессов, вызванных различными штаммами бактерий. Первый препарат был обнаружен в 1928 году британским бактериологом Александром Флемингом. Однако, некоторые антибиотики также назначают при онкологических патологиях, как компонент комбинированной химиотерапии. На вирусы эта группа лекарственных средств практически не действует, за исключением некоторых тетрациклинов. В современной фармакологии термин «антибиотики» все чаще заменяется «антибактериальными препаратами».

Первыми синтезировали лекарственные средства из группы пенициллинов. Они помогли существенно снизить летальность таких заболеваний, как пневмония, сепсис, менингит, гангрена и сифилис. Со временем из-за активного использования антибиотиков у многих микроорганизмов начала возникать стойкость к ним. Поэтому важной задачей стал поиск новых групп антибактериальных препаратов.

Постепенно фармацевтические компании синтезировали и начали выпускать цефалоспорины, макролиды, фторхинолоны, тетрациклины, левомицетин, нитрофураны, аминогликозиды, карбапенемы и другие антибиотики.

Основной фармакологической классификации антибактериальных препаратов является разделение за действием на микроорганизмы. За этой характеристикой различают две группы антибиотиков:

  • бактерицидные — лекарственные средства вызывают гибель и лизис микроорганизмов. Это действие обусловлено способностью антибиотиков ингибировать синтез мембран или подавлять продукцию компонентов ДНК. Данным свойством владеют пенициллины, цефалоспорины, фторхинолоны, карбапенемы, монобактамы, гликопептиды и фосфомицин.
  • бактериостатические — антибиотики способны угнетать синтез белков микробными клетками, что делает невозможным их размножение. Как результат, ограничивается дальнейшее развитие патологического процесса. Это действие характерно для тетрациклинов, макролидов, аминогликозидов, линкозаминов и аминогликозидов.

За спектром действия различают также две группы антибиотиков:

  • с широким — препарат можно использовать для лечения патологий, вызванных большим числом микроорганизмов;
  • с узким — медикамент влияет на отдельные штаммы и виды бактерий.

Еще существует классификация антибактериальных препаратов по их происхождению:

  • природные — получают из живых организмов;
  • полусинтетические антибиотики являются модифицированными молекулами природных аналогов;
  • синтетические — их производят полностью искусственно в специализированных лабораториях.

Описание различных групп антибиотиков

Исторически первая группа антибактериальных препаратов. Имеет бактерицидный эффект на широкий спектр микроорганизмов. Пенициллины различают следующих групп:

  • природные пенициллины (синтезируются в нормальных условиях грибами) — бензилпенициллин, феноксиметилпенициллин;
  • полусинтетические пенициллины, которые имеют большую стойкость против пенициллиназ, что значительно расширяет их спектр действия — медикаменты оксациллина, метициллина;
  • с расширенным действием — препараты амоксициллина, ампициллина;
  • пенициллины с широким действием на микроорганизмы — медикаменты мезлоциллина, азлоциллина.

Чтобы уменьшить резистентность бактерий и увеличить шанс успеха антибиотикотерапии, к пенициллинам активно добавляют ингибиторы пенициллиназ — клавулановую кислоту, тазобактам и сульбактам. Так появились препараты «Аугментин», «Тазоцим», «Тазробида» и другие.

Применяют данные медикаменты при инфекциях дыхательной (бронхите, синусите, пневмониях, фарингите, ларингите), мочеполовой (цистите, уретрите, простатите, гонорее), пищеварительной (холецистите, дизентерии) систем, сифилисе и поражениях кожи. Из побочных эффектов наиболее часто встречаются аллергические реакции (крапивница, анафилактический шок, ангионевротический отек).

Пенициллины также являются наиболее безопасными средствами для беременных и младенцев.

Эта группа антибиотиков владеет бактерицидным действием на большое количество микроорганизмов. Сегодня выделяют следующие поколения цефалоспоринов:

  • I — препараты цефазолина, цефалексина, цефрадина;
  • II — медикаменты с цефуроксимом, цефаклором, цефотиамом, цефокситином;
  • III — препараты цефотаксима, цефтазидима, цефтриаксона, цефоперазона, цефодизима;
  • IV — медикаменты с цефепимом, цефпиромом;
  • V — препараты цефторолина, цефтобипрола, цефтолозана.

Подавляющее большинство данных медикаментов существует только в инъекционной форме, поэтому их используют преимущественно в клиниках. Цефалоспорины являются наиболее популярными антибактериальными средствами для использования в стационарах.

Данные препараты применяют для лечения огромного количества заболеваний: пневмоний, менингитов, генерализации инфекций, пиелонефритов, циститов, воспаления костей, мягких тканей, лимфангитов и других патологий. При использовании цефалоспоринов часто встречается гиперчувствительность. Иногда наблюдаются транзиторное снижение клиренса креатинина, боли в мышцах, кашель, повышение кровоточивости (из-за уменьшения витамина К).

Являются довольно новой группой антибиотиков. Как и остальные бета-лактамы, карбапенемы имеют бактерицидный эффект. К данной группе медикаментов остаются чувствительны огромное количество различных штаммов бактерий. Также карбапенемы проявляют стойкость против ферментов, которые синтезируют микроорганизмы. Данные свойства привели к тому, что их считают препаратами спасения, когда остальные антибактериальные средства остаются неэффективными. Однако, их использование строго ограничено из-за опасений развития стойкости бактерий. К этой группе препаратов относятся меропенем, дорипенем, эртапенем, имипенем.

Используют карбапенемы для лечения сепсиса, пневмонии, перитонита, острых хирургических патологий брюшной полости, менингита, эндометрита. Также назначают данные препараты пациентам с иммунодефицитами или на фоне нейтропении.

Среди побочных эффектов нужно отметить диспепсические расстройства, головную боль, тромбофлебит, псевдомембранозный колит, судороги и гипокалиемию.

Монобактамы действуют преимущественно только на грамотрицательную флору. В клинике используется только одно действующее вещество из данной группы — азтреонам. С его преимуществ выделяется устойчивость к большинству бактериальных энзимов, что делает его препаратом выбора при неэффективности лечения пенициллинами, цефалоспоринами и аминогликозидами. В клинических рекомендациях азтреонам рекомендуется при энтеробактерной инфекции. Он применяется только внутривенно или внутримышечно.

Среди показаний к приему нужно выделить сепсис, внебольничную пневмонию, перитонит, инфекции органов таза, кожи и опорно-двигательного аппарата. Применение азтреонама иногда приводит к развитию диспепсических симптомов, желтухи, токсического гепатита, головной боли, головокружения и аллергической сыпи.

Макролиды являются группой антибактериальных препаратов, которые в основе имеют макроциклическое лактонное кольцо. Эти лекарственные средства имеют бактериостатический эффект против грамположительных бактерий, внутриклеточных и мембранных паразитов. Особенностью макролидов есть тот факт, что их количество в тканях значительно выше, нежели в плазме крови пациента.

Медикаменты также отмечаются низкой токсичностью, что позволяет их применять при беременности и в раннем возрасте ребенка. Их делят на следующие группы:

  • природные, которые синтезировали в 50-60-х годах прошлого столетия — препараты эритромицина, спирамицина, джозамицина, мидекамицина;
  • пролекарства (преобразуются в активную форму после метаболизма) — тролеандомицин;
  • полусинтетические — медикаменты азитромицина, кларитромицина, диритромицина, телитромицина.

Макролиды применяют при многих бактериальных патологиях: язвенной болезни, бронхите, пневмонии, инфекциях ЛОР-органов, дерматозе, болезни Лайма, уретрите, цервиците, роже, импентиго. Нельзя использовать эту группу медикаментов при аритмиях, недостаточности почечной функции.

Впервые синтезировали тетрациклины более полувека тому. Данная группа владеет бактериостатическим эффектом против многих штаммов микробной флоры. В высоких концентрациях они проявляют и бактерицидное действие. Особенностью тетрациклинов является их способность накапливаться в костной ткани и эмали зубов.

С одной стороны это позволяет клиницистам активно использовать их при хроническом остеомиелите, а с другой нарушает развитие скелета у детей. Поэтому их категорически нельзя применять при беременности, лактации и в возрасте до 12 лет. К тетрациклинам, кроме одноименного препарата, относят доксициклин, окситетрациклин, миноциклин и тигециклин.

Используют их при различных кишечных патологиях, бруцеллезе, лептоспирозе, туляремии, актиномикозе, трахоме, болезни Лайма, гонококковой инфекции и риккетсиозах. Среди противопоказаний выделяют также порфирию, хронические заболевания печени и индивидуальную непереносимость.

Фторхинолоны являются большой группой антибактериальных средств с широким бактерицидным действием на патогенную микрофлору. Все препараты являются походными налидиксовой кислоты. Активное использование фторхинолонов началось с 70-х годов прошлого столетия. Сегодня их классифицируют по поколениям:

  • I — препараты налидиксовой и оксолиновой кислоты;
  • II — медикаменты с офлоксацином, ципрофлоксацином, норфлоксацином, пефлоксацином;
  • III — препараты левофлоксацина;
  • IV — медикаменты с гатифлоксацином, моксифлоксацином, гемифлоксацином.

Последние поколения фторхинолонов получили название «респираторных», что обусловлено их активностью против микрофлоры, которая наиболее часто стает причиной развития пневмонии. Также они используются для лечения синуситов, бронхитов, кишечных инфекций, простатита, гонореи, сепсиса, туберкулеза и менингита.

Среди недостатков необходимо выделить то, что фторхинолоны способны влиять на формирования опорно-двигательного аппарата, поэтому в детском возрасте, при беременности и в период лактации их можно назначать только по жизненным показаниям. Первое поколения препаратов также отличается высокой гепато- и нефротоксичностью.

Аминогликозиды нашли активное применение в лечении бактериальной инфекции, вызванной грамотрицательной флорой. Они оказывают бактерицидное действие. Их высокая эффективность, которая не зависит от функциональной активности иммунитета пациента, сделала их незаменимыми средствами при его нарушениях и нейтропении. Различают следующие поколения аминогликозидов:

  • I — препараты неомицина, канамицина, стрептомицина;
  • II — медикаменты с тобрамицином, гентамицином;
  • III — препараты амикацина;
  • IV — медикаменты с изепамицином.

Назначают аминогликозиды при инфекциях дыхательной системы, сепсисе, инфекционном эндокардите, перитоните, менингите, цистите, пиелонефрите, остеомиелите и других патологиях. Среди побочных эффектов большое значение имеют токсическое воздействие на почки и снижение слуха.

Поэтому во время курса терапии необходимо регулярно проводить биохимический анализ крови (креатинин, ШКФ, мочевина) и аудиометрию. Беременным, в период лактации, больным с хронической болезнью почек или на гемодиализе аминогликозиды назначаются только по жизненным показаниям.

Гликопептидные антибиотики владеют бактерицидным эффектом широкого спектра действия. Наиболее известны из них — блеомицин и ванкомицин. В клинической практике гликопептиды являются препаратами резерва, которые назначаются при неэффективности остальных антибактериальных средств или специфической чувствительности к ним возбудителя инфекции.

Их часто комбинируют с аминогликозидами, что позволяет увеличить совокупное действие в отношении золотистого стафилококка, энтерококка и стрептококка. На микобактерии и грибы гликопептидные антибиотики не действуют.

Назначают данную группу антибактериальных средств при эндокардите, сепсисе, остеомиелите, флегмоне, пневмонии (в том числе осложненной), абсцессе и псевдомембранозном колите. Нельзя применять гликопептидные антибиотики при почечной недостаточности, повышенной чувствительности к препаратам, лактации, неврите слухового нерва, беременности и в период лактации.

К линкозамидам относят линкомицин и клиндамицин. Эти препарат проявляют бактериостатическое действие на грамположительные бактерии. Их использую преимущественно в комбинации с аминогликозидами, как средства второй линии, для тяжелых пациентов.

Линкозамиды назначают при аспирационной пневмонии, остеомиелите, диабетической стопе, некротическом фасциите и других патологиях.

Довольно часто во время их приема развивается кандидозная инфекция, головная боль, аллергические реакции и угнетение кроветворения.

источник