Меню Рубрики

Левомицетин в мясе норма

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОБНАРУЖЕНИЮ, ИДЕНТИФИКАЦИИ И ОПРЕДЕЛЕНИЮ ОСТАТОЧНЫХ КОЛИЧЕСТВ ЛЕВОМИЦЕТИНА В ПРОДУКТАХ ЖИВОТНОГО ПРОИСХОЖДЕНИЯ

Разработаны Институтом питания АМН СССР, кафедрой общей гигиены Белорусского Государственного института усовершенствования врачей Минздрава СССР.

Предназначены для контроля остаточных количеств левомицетина в пищевых продуктах санитарно-эпидемиологическими станциями, а также заводскими и сельскохозяйственными лабораториями.

Среди ряда посторонних веществ, которые могут загрязнять различные пищевые продукты, важное место занимают лекарственные средства. Наиболее часто пищевые продукты загрязняются остатками лекарственных препаратов, применяемых для профилактики и лечения животных и птицы, ускорения их роста, улучшения качества и сохранности кормов и т.п. Номенклатура лекарств, используемых в животноводстве и ветеринарии, постоянно расширяется.

К сильнодействующим лекарственным препаратам, используемым в ветеринарии и животноводстве, относятся антибиотики. Известно большое число антибиотиков, природных и полусинтетических, обладающих различными свойствами, механизмом и спектром действия, распределением в организме животного, характером метаболизма и др.

Широкое применение антибиотиков в ветеринарии и животноводстве создает определенные проблемы с точки зрения гигиены питания, требует проведения соответствующих мероприятий для снижения уровня загрязненности продуктов этими веществами, а также организации контроля за остаточными количествами препаратов в продуктах животноводства.

При систематическом поступлении в организм человека с пищей антибиотики могут вызывать различные аллергические реакции, нарушение обмена веществ, дисбактериоз, подавлять активность некоторых ферментов, изменять микрофлору, способствовать распространению устойчивых форм микроорганизмов и т.д. Следует учитывать возможность отрицательного влияния антибиотиков в сырье для пищевой промышленности на проведение ряда технологических процессов по переработке мяса, рыбы, молока и других продуктов, кроме того, наличие антибиотиков может затруднять бактериологические исследования качества продуктов животного происхождения.

В мясе, печени, почках, молоке, твороге, сметане, сыре, яйце, рыбе, меде и других продуктах довольно часто обнаруживают остаточные количества антибиотиков, что предопределяет необходимость проведения выборочного, периодического или систематического их контроля. Некоторые из перечисленных продуктов являются диетическими (молоко, творог, сметана и др.), поэтому отсутствие в них токсических и лекарственных соединений особенно важно.

В СССР остаточные количества ряда антибиотиков регламентированы предельно допустимыми концентрациями (ПДК) . К ним относятся тетрациклины (0,01 ед./г), пенициллины (0,01 ед./г) и стрептомицин (0,5 ед./г).

Медико-биологические требования и санитарные нормы качества продовольственного сырья и пищевых продуктов. М., Издательство стандартов, 1990 г.

Для контроля уровней этих антибиотиков Минздравом СССР утверждены микробиологические методы определения, которые позволяют обнаруживать и идентифицировать группы указанных веществ на уровне ПДК.

Левомицетин (хлормицетин, хлорамфеникол) — эффективный синтетический антибиотик широкого спектра действия, запрещен к использованию в животноводстве и ветеринарии для лечения скота, птицы, мясо, молоко и яйца которых предназначены для питания людей. Это связано с токсичностью левомицетина, проявляющейся в аллергических реакциях, поражении кроветворных органов и др. Однако относительная дешевизна этого препарата и высокая антибактериальная активность приводят к нелегальному использованию его в относительно высоких масштабах.

Микробиологические методы неэффективны для анализа этого антибиотика в пищевых продуктах, т.к. найденные тест-культуры малочувствительны и не позволяют осуществлять контроль за остаточными количествами левомицетина хотя бы на уровне ПДК других антибиотиков, разрешенных к применению.

В связи с этим за рубежом наиболее часто применяют химические методы определения левомицетина в пищевых продуктах с использованием хроматографического разделения.

В настоящих Методических рекомендациях впервые в СССР предпринята попытка применения для контроля остаточных количеств левомицетина в пищевых продуктах простого химического метода анализа, основанного на извлечении антибиотика экстракцией органическим растворителем, концентрировании экстракта, отделении левомицетина в тонком слое силикагеля от коэкстрактивных веществ и определении его после восстановления в виде производного с n-деметиламинобензальдегидом.

Доступность реактивов и оборудования позволяет рекомендовать этот метод для серийных анализов пищевых продуктов в условиях санэпидстанций, заводских и сельскохозяйственных лабораторий.

Предел обнаружения левомицетина на хроматографической пластинке 5 — 10 нг в зоне. Относительное стандартное отклонение при визуальном определении не превышает 0,4, при спектрофотометрическом — 0,2. Метод позволяет проводить анализ левомицетина при содержании его 0,05 мг/кг продукта и выше.

Метод состоит из следующих основных стадий:

1. Отбор и подготовка пробы.

2. Извлечение левомицетина из пищевых продуктов и концентрированного экстракта.

3. Хроматографическое разделение, идентификация и ориентировочная оценка концентрации левомицетина в экстракте.

4. Подтверждение наличия левомицетина в пробе.

5. Количественное определение и расчет содержания левомицетина в продукте.

Спектрофотометр СФ-26 или аналог

Термостат ТС-80М-2 или аналог

Азот, поверочный нулевой газ

Центрифуга настольная по 375-4261 или аналог

Ротационный испаритель с крышкой по ТУ 25-11-917

Баня масляная или глицериновая

Камера для тонкослойной хроматографии с притертой крышкой, например стеклянный четырехгранный сосуд 195 x 195 x 200 мм завода «Дружная горка».

Пластины для тонкослойной хроматографии «Силуфол» размером 15 x 15 см, ЧСФР или Сорбфил 100 x 100 (г. Краснодар) ТУ 26-11-17-89

Весы технические по ГОСТ 24104

Весы аналитические по ГОСТ 24104

Карандаш графитовый М или аналог

Цилиндры мерные вместимостью 25 и 100 мл по ГОСТ 1770

Колбы плоскодонные на 250 и 500 мл с НШ N 14,5 по ТУ 48-52

Колбы мерные на 25 мл по ГОСТ 1770

Пипетки на 5 и 10 мл по ГОСТ 20292

Колбы для упаривания на мл с НШ N 14,5 по ГОСТ 10394

Микрошприц на 10 и 25 мкл

Натрий сернокислый, безводный по ГОСТ 4166

Серная кислота по ГОСТ 14262 1 н

Натрий хлористый по ГОСТ насыщенный раствор в воде

Натрий углекислый по ГОСТ 2% водный раствор

Ацетонитрил по ТУ 6-09-3534-87

бета-глукуронидаза, водный раствор 1 мг/мл

Вода дистиллированная по ГОСТ 6709

Кислота соляная, конц. по ГОСТ 3118

Хлорид олова (II), восстанавливающий реактив: 3 мл 15% раствора SnCl

(в воде) + 15 мл HCl + 180 мл H O

Однозамещенный фосфат калия

Двузамещенный фосфат натрия

Способ отбора и подготовки проб должен быть указан в нормативно-технической документации на конкретную продукцию.

Мясо . 10 +/- 0,1 г гомогенизируют с 15 мл 0,025 М фосфатного

буфера, pH 6,88 (0,34 г KH PO и 0,36 г Na HPO растворяют в 100 мл

дистиллированной воды), добавляли 200 мкл водного раствора

бета-глукуронидазы и инкубировали 1,5 часа при 37 °С. Гомогенат

экстрагировали 3 x 30 мл этилацетата, при необходимости применяя для

расслоения суспензии центрифугирование 5 — 10 мин. при 4000 об./мин.

Этилацетатный слой объединяли.

Аналогично извлекали левомицетин из мясных продуктов, органов и

Молоко . 25 +/- 0,1 мл насыщают 10 г Na SO , приливают 10 мл

этилацетата и 5 мл 1 н H SO , интенсивно встряхивают 1 — 2 мин. Для

расслоения эмульсии применяют центрифугирование 5 — 10 мин. при 4000

об./мин. Этилацетат декантируют, а супернатант экстрагируют последовательно

30 и 20 мл этилацетата, при необходимости применяя центрифугирование для

Аналогично извлекали левомицетин из кефира, ряженки, йогуртов.

Яйцо . 10 +/- 0,1 г гомогената яйца перетирают с 5 г Na SO ,

приливают 40 мл этилацетата и 5 мл 1 н H SO , перемешивают и центрифугируют

5 — 10 мин. при 4000 об./мин. Этилацетатный слой декантируют, а водную

часть экстрагируют последовательно 30 и 20 мл этилацетата, при

необходимости применяя центрифугирование для расслоения. Объединенные

этилацетатные экстракты из продуктов промывают последовательно 10 мл 2%

раствора Na CO , насыщенного NaCl, и 10 мл насыщенного раствора NaCl.

Яичный порошок предварительно разводят водой до консистенции

Органический слой отбирают и упаривают на ротационном испарителе при

исчезновения запаха этилацетата, добавляют 3 мл смеси ацетонитрил — вода

1:4 и экстрагируют 3 x 5 мл петролейного эфира. Петролейный эфир

отбрасывают и извлекают левомицетин этилацетатом (3 x 5 мл). Этилацетатный

экстракт сушат над Na SO (1 г), декантируют, промывают 3 мл этилацетата

сульфат натрия, объединяют его с экстрактом и упаривают на ротационном

испарителе при температуре

Отвешивают 25 мг левомицетина, помещают в мерную колбу на 25 мл и растворяют в метаноле, концентрация левомицетина — 1 мг/мл. 0,25 мл полученного раствора помещают в мерную колбу на 25 мл и разбавляют метанолом. Концентрация левомицетина в стандартном растворе 10 нг/мкл.

При анализе сметаны ее разбавляют в 2,5 — 5 раз в зависимости от жирности. Сыры и творог гомогенизируют с водой до получения гомогенной массы.

На пластинку для тонкослойной хроматографии наносят (рис. а — рисунки здесь и далее не приводятся): в точки 1, 3 и 5 соответственно 1, 2 и 4 мкл раствора стандарта, а в точки 2 и 4 соответственно 3 и 10 мкл концентрированного экстракта.

Пластинку помещают в камеру для ТСХ и хроматографируют в системе

растворителей хлороформ — метанол 10:1. По достижении фронтом элюента

верхнего края пластинки ее вынимают, сушат, опрыскивают раствором SnCl в

HCl, оставляют на 15 мин. и опрыскивают раствором

n-диметиламинобензальдегида. Появление желтых пятен на хроматографической

пластинке по оттенку и R , соответствующих пятнам стандарта,

свидетельствует о возможном присутствии левомицетина в продукте. Сравнивая

интенсивность окраски пятен стандартов и опытной пробы, ориентировочно

оценивают содержание левомицетина в экстракте.

4. Подтверждение наличия левомицетина в пробе

Аликвотную часть экстракта (50 — 100 мкл) упаривают досуха, добавляют

150 мкл 10% раствора HCl, греют на масляной бане при температуре 98 °С в

течение 30 мин., отдувают досуха азотом и приливают 200 мкл 2% метанольного

На хроматографическую пластинку наносят 5 — 10 мкл полученной пробы и

соответствующее количество стандарта левомицетина (с учетом предварительной

оценки содержания левомицетина в экстракте); пластинку помещают в камеру

для ТСХ и хроматографируют в системе растворителей хлороформ — метанол —

уксусная кислота — вода 12:5:4:2.

По достижении фронтом элюента верхнего края пластинки ее вынимают,

сушат, опрыскивают раствором SnCl в HCl, оставляют на 15 мин. Вновь

опрыскивают раствором n-диметиламинобензальдегида. Появление желтых пятен

на хроматографической пластинке по оттенку и R , соответствующих пятнам

стандарта, подтверждает наличие левомицетина в продукте.

5. Количественное определение и расчет

содержания левомицетина в продукте

При необходимости точного количественного определения левомицетина в

пищевом продукте на хроматографическую пластинку наносят в несколько точек,

близко расположенных друг к другу, аликвотную часть экстракта и таким же

образом раствор стандарта так, чтобы количество левомицетина в нем было

близко к установленному в пробе при ориентировочной визуальной оценке.

Пластинку хроматографируют и опрыскивают как в п. 3.2. Вырезают зоны

левомицетина в опытной пробе, стандарте и соответствующую по R и площади

зону на пластинке, служащую контролем (рис. б). Зоны элюируют 3 x 1 мл

метанола, метанол упаривают досуха, приливают 200 мкл 5% раствора SnCl в

5% HCl, греют при температуре 98 °С в течение 1 часа; пробы охлаждают,

добавляют по 2 мл 1% раствора n-диметиламинобензальдегида в метаноле, 1 мл

метанола и измеряют оптическую плотность полученных растворов опытной пробы

и стандарта относительно контрольной пробы на спектрофотометре в кюветах с

l = 10 мм при лямбда = 430 нм.

Рассчитывают содержание левомицетина в пробе продукта по формуле:

k — коэффициент, учитывающий полноту извлечения левомицетина из

пищевого продукта и равный 1,33 для мяса, 1,13 — для молока и 1,25 — для

ОП — оптическая плотность элюата опытной пробы, относ. ед.;

ОП — оптическая плотность элюата стандарта, относ. ед.;

P — количество стандарта левомицетина, нанесенного на пластинку, мкг;

V — объем анализируемой пробы, мкл;

V — объем аликвотной части экстракта, взятой для количественного

M — масса образца пищевого продукта, кг (л).

Интервал определяемых масс левомицетина составляет 0,5 — 6,0 мкг.

Вычисления проводят до второго десятичного знака.

За окончательный результат испытаний принимают среднее арифметическое двух параллельных определений, расхождение между которыми не превышает 20%.

Окончательный результат округляют до первого десятичного знака.

В случае обнаружения остаточных количеств левомицетина и подтверждения правильности его идентификации в исследуемых пищевых продуктах вопрос с их реализацией решается согласно «Методическим указаниям по определению остаточных количеств антибиотиков в продуктах животноводства». Москва, Минздрав СССР, ГОЭУ. 1985 г., 34 с.

N 3049-84 от 29 июня 1984 г.

Представленные рекомендации являются первой в СССР попыткой наладить систематический контроль за наличием и уровнями левомицетина в пищевых продуктах. До настоящего времени анализ левомицетина при необходимости выполняли микробиологически. Однако, отсутствие чувствительных тест-культур не позволяет рассчитывать на обнаружение микрограммовых количеств этого антибиотика такими способами. В связи с этим особенно важно создание химического метода контроля остаточных количеств левомицетина, позволяющего с небольшими затратами обнаружить, идентифицировать и количественно определить его содержание. Левомицетин обладает определенной токсичностью и поэтому запрещен к использованию как у нас в стране, так и за рубежом для лечения, например, лактирующих коров или кур-несушек. Анализ литературных данных позволяет сделать заключение, что применение его для лечения сельскохозяйственных животных и птицы — достаточно частое явление, оправданное дешевизной и эффективностью препарата.

Читайте также:  Можно ли левомицетин инструкция

Интенсификация сельскохозяйственного производства может стать одной из причин снижения качества пищевых продуктов и, в частности, загрязнения их антибиотиками. Поэтому своевременный и надежный контроль за наличием левомицетина становится важным и актуальным.

Все отмеченное позволяет рекомендовать утвердить разработанные методические рекомендации для внедрения в практику работы учреждений Госсаннадзора. Полученные этим методом материалы целесообразно обобщить для создания общей картины частоты и уровней загрязнения пищевых продуктов БССР левомицетином.

Руководитель отдела гигиены питания

Института питания АМН СССР, профессор

Ассоциация содействует в оказании услуги в продаже лесоматериалов: дрова колотые по выгодным ценам на постоянной основе. Лесопродукция отличного качества.

источник

СТАЙЛАБ предлагает тест-системы для определения левомицетина (хлорамфеникола) в молоке в соответствии с ГОСТ Р 52842-2007 (ИСО 18330:2003), сухом молоке, масле, сыре, твороге, молочных продуках (кефире, сметане, йогурте, йогурте с фруктами), меде, пчелином маточном молочке, креветках, рыбной муке, мясе, яйцах по МУК 4.1.3535-18, сыворотке крови/плазме, моче, комбикормах, ферментах, вине и виноградном соке.

Иммунохроматографический метод анализа, тест-полоски
9268 Сухое молоко с содержанием хлорамфеникола 0,13 мкг/кг, 17 мл
9267 Сухое молоко с содержанием хлорамфеникола 0,34 мкг/кг, 17 мл
9269 Сухое молоко с содержанием хлорамфеникола менее 0,015 мкг/кг, 17 мл, для отрицательного контроля
S-4032 cтандарт хлорамфеникола SPEX
Чистые вещества и стандарты сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов для анализа в соответствии с ГОСТ 54904-2012

Левомицетин (хлорамфеникол, хлоромицетин) – это антибиотик широкого спектра действия. Он обладает бактериостатическим действием и эффективен против возбудителей таких заболеваний, как дизентерия, брюшной тиф, пневмония, газовая гангрена, сибирская язва бактерий рода Yersinia (возбудители иерсиниоза, псевдотуберкулеза и чумы) и многих других опасных микроорганизмов. Хлорамфеникол очень хорошо растворяется в жирах и в значительных количествах выделяется с молоком. Его молекула имеет небольшие размеры, и это, вместе с жирорастворимостью, позволяет ему легко проникать во все ткани тела, в том числе, в мозг.

ВОЗ рекомендует использовать масляную суспензию хлорамфеникола в качестве первой линии терапии менингита в странах с низким уровнем дохода. В форме мазей для наружного использования он применяется при фурункулезе и других кожных заболеваниях, а также при ранениях. Многие лечат с помощью левомицетина пищевые токсикоинфекции («пищевые отравления»). Согласно источникам, хлорамфеникол проявляет активность в отношении некоторых крупных вирусов. При этом микроорганизмы очень медленно вырабатывают резистентность к нему, потому левомицетин остается очень эффективным антибиотиком.

В сельском хозяйстве и ветеринарии левомицетин применяется для лечения животных и птицы, больных желудочно-кишечными заболеваниями, в том числе, кокцидиозом, который вызывают паразиты. Также его используют для лечения заболеваний дыхательных путей.

Впервые хлорамфеникол выделили в 1947 году из культуры почвенного микроорганизма Streptomyces venezuelae. В клинической практике он используется с 1949 года. Позднее левомицетин научились синтезировать искусственным путем, и в настоящее время его получают именно таким способом.

В России хлорамфеникол входит в список жизненно необходимых и важнейших лекарственных препаратов и применяется в животноводстве и ветеринарии. В США левомицетин не выпускается для перорального употребления с 1991 года. В странах Евросоюза использование этого средства в животноводстве запрещено. Рекомендации применять хлорамфеникол только для лечения тяжелых заболеваний, запреты на его использование в животноводстве или необходимость контролировать содержание левомицетина в пищевых продуктах связаны с побочными эффектами этого средства, возникающими при хроническом воздействии на человека. Одним из таких эффектов являются реакции гиперчувствительности вплоть до анафилактического шока. Но чаще они выражаются в крапивнице и других кожных проявлениях, особенно при использовании мазей с левомицетином.

Левомицетин метаболизируется в печени с образованием глюкоронида хлорамфеникола – неактивного соединения. В этом виде он выводится почками. Хлорамфеникол ингибирует активность одного из ферментов печени, участвующего в обмене стероидов и некоторых других соединений, а также в нейтрализации токсичных веществ, что нарушает работу печени. В некоторых случаях левомицетин вызывать почечные кровотечения. Хлорамфеникол долгое время остается в организме животных и в пищевых продуктах, в том числе, в мясе и молоке.

Длительное употребление левомицетина в высоких дозировках может вызывать желудочно-кишечные расстройства, раздражение слизистых оболочек рта и желудочно-кишечного тракта, а также возникновение язв на них. Кроме того, он подавляет микрофлору кишечника, что часто приводит к расстройствам пищеварения или вторичной грибковой инфекции.

Самые опасные эффекты хронического употребления левомицетина связаны с его воздействием на кроветворную систему. Он вызывает апластическую анемию (атрофию кроветворения): неизлечимое заболевание, вызванное повреждением клеток костного мозга. При ней снижается количество всех трех типов клеток крови: лейкоцитов, эритроцитов и тромбоцитов. Это редкое осложнение, и при употреблении левомицетина оно чаще всего возникает, если это средство применяли перорально. К другим осложнениям со стороны кроветворной системы относится подавление работы костного мозга, а также лейкемия («рак крови»). Чаще всего такая реакция возникает у детей, причем риск ее возникновения увеличивается с увеличением длительности употребления левомицетина.

Дозы левомицетина, способные вызывать побочные эффекты, в том числе, апластическую анемию, до сих пор не определены. Поэтому в странах Евросоюза использование левомицетина при производстве пищевых продуктов животного происхождения запрещено. Минимальный предел чувствительности методов анализа, с помощью которых в Евросоюзе допускается проводить определение левомицетина (хлорамфеникола) в пище составляет 0,3 мкг/кг.

Согласно гигиеническим требованиям к качеству и безопасности продовольственного сырья и пищевых продуктов, принятым в Российской Федерации и странах Таможенного Союза, в соответствии с Техническим Регламентом Таможенного Союза ТР ТС 021/2011 («О безопасности пищевой продукции») содержание левомицетина (хлорамфеникола) в яйцах, мясе и других продуктов не допускается (должно быть менее 0,01 мг/кг, или 10 мкг/кг). Такие же нормы установлены для молочных продуктов Техническим Регламентом Таможенного Союза ТР ТС 033/2013 «О безопасности молока и молочной продукции». С 1 июля 2015 года, согласно ТР ТС 033/2013, максимально допустимое содержание левомицетина в молоке не должно превышать 0,0003 мг/кг (0,3 мкг/кг), что соответствует также нормам Евросоюза. С актуальными законодательными нормативами можно ознакомиться на сайте compact24.com.

Остаточные количества левомицетина (хлорамфеникола) в пищевых продуктах можно определять методами радиоиммуного анализа и жидкостной хроматографии высокого давления. Однако данные методы реализуются на дорогостоящем оборудовании и занимают длительное время. Кроме того, радиоиммунный метод анализа предполагает использование радиоактивных материалов, а хроматографические методы требуют квалифицированного обслуживания и трудоемки. Микробиологические методы определения антибиотиков, в том числе, левомицетина, просты и дешевы, но недостаточно специфичны, поскольку многие микроорганизмы чувствительны к различным антибиотикам.

Для скрининга и в рутинной лабораторной практике широко применяют иммуноферментный метод анализа. Например, с сентября 1998 г. в Германии ИФА является официальным методом скрининга остатков левомицетина в молоке; см.§ 35 LMBG, 01.00 68. В Белоруссии утверждены МУК 10-1-5/118/В от 18.08.2003 по контролю левомицетина в молоке, сухом молоке, яйцах и мясе с помощью тест-системы RIDASCREEN® Chloramphenicol. В России метод иммуноферментного анализа для определения левомицетина в пищевых продуктах утвержден МУК 4.1.1912-04.

источник

Среди ряда веществ, контаминирующих продовольственное сырье и пищевые продукты, особое место занимают антибиотики. Данные вещества применяются при лечении больных животных, используются в качестве кормовых добавок и препаратов для стимуляции роста. Остаточные количества антибиотиков часто обнаруживают в молоке и молочных продуктах, в пищевых продуктах животного происхождения вследствие нарушения режима профилактики и лечения животных, а также в результате несоблюдения времени выдержки перед забоем.

Наличие антибиотика в пищевом сырье может изменить ход технологического процесса и повлиять на качество выпускаемой продукции. Кроме того, антибиотики могут специально вноситься в молоко производителями (фальсификация антибиотиками) для предотвращения преждевременного его скисания. Далее с продуктами питания они могут поступать в организм человека и оказывать неблагоприятное влияние на здоровье. Длительное использование в пищу продуктов, содержащих остаточное количество антибиотиков, может приводить к неблагоприятным для человека последствиям: возникновению аллергических реакций, дисбактериозов, анафилактического шока, увеличению антибиотикоустойчивости микрофлоры в организме, что впоследствии затрудняет выбор антибактериальных препаратов для лечения различных воспалительных заболеваний. Одним из таких антибиотиков является левомицетин.

Для экспортирования продукции за рубеж необходимо соблюдать требования международного ветеринарного кодекса и директив ЕС относительно выполнения ветеринарно-санитарных норм и правил при выращивании, производстве, переработке, хранении, транспортировании и реализации продукции. По этим причинам использование антибиотиков должно находиться под строгим санитарно-ветеринарным и гигиеническим контролем. Методы, применяемые для контроля наличия данных препаратов в продовольственном сырье и пищевых продуктах, можно разделить на микробиологические, физико-химические и иммунологические. Микробиологические методы (агародиффузный «чашечный» метод) определения основаны на измерении диаметра участков торможения роста бактерий, чувствительных к данному антибиотику (зон ингибиции). Эти методы являются сравнительно простыми и дешевыми, однако отличаются недостаточной чувствительностью, специфичностью и воспроизводимостью результатов.

Предпочтительным для контроля продовольственного сырья является иммуноферментный метод анализа, который обладает высокой чувствительностью, точностью, специфичностью, быстротой проведения анализа. Для определения левомицетина используют тест-системы типа «Ридаскрин Хлорамфинекол» и «МАХ SIGNAL Хлорамфинекол». Чувствительность этих методов в зависимости от анализируемого продукта составляет 0,01–0,25 мкг/кг (яйца, молоко, рыба, мясо). Данный метод широко используется для проведения скрининговых исследований. В случае установления фактов отсутствия антибиотиков в сырье с помощью иммуноферментного метода, обнаружение их в готовой продукции исключено. Недостатком указанного метода является то, что в настоящее время он не применим для готовой продукции. Это связано с тем, что производимые за рубежом тест-системы предназначены только для определения антибиотиков в продовольственном сырье, так как нормирование антибиотиков в странах Евросоюза проводится по сырью. Еще один недостаток — большой процент ложноположительных результатов. В случае получения положительного отклика, наличие антибиотика или его отсутствие в анализируемой продукции необходимо подтверждать другими методами анализа.

Методы высокоэффективной жидкостной хроматографии (ВЭЖХ) со спектрофотометрическим детектированием также используются для контроля содержания остаточных количеств левомицетина и его метаболитов в продовольственном сырье и пищевых продуктах. Однако чувствительность данных методов недостаточно велика и составляет 6,5—10,0 мкг/кг.

Также следует отметить, что ни один из вышеперечисленных методов не распространяется на пищевые продукты для детского и специализированного питания (для беременных и кормящих женщин, диетическое, спортивное), БАДы и пищевые добавки, содержащие продукты животноводства.

В странах Европы, Японии, США содержание хлорамфеникола регламентируется на уровне минимальной чувствительности метода, которая составляет 0,3 мкг/кг. В Беларуси в соответствии с требованиями СанПиГН до недавнего времени наличие левомицетина в мясе, мясных изделиях, молоке и молочных продуктах, продуктах для детского питания также не допускалось в пределах применяемого метода определения. В связи с введением в действие технического регламента Таможенного союза (ТР ТС 033/2013) содержание левомицетина в продуктах питания было четко регламентировано (о декларировании соответствия продукции в рамках Таможенного союза с выдачей документов по Единой форме читать здесь). Так, в сыром молоке, сыром обезжиренном молоке, сырых сливках и во всей молочной продукции содержание левомицетина (хлорамфеникола) не допускается более 0,01 мг/кг, а для продукции детского питания на молочной основе установлены еще более жесткие нормативы, при которых содержание левомицетина (хлорамфеникола) не должно превышать допустимого уровня 0,0003 мг/кг.

В настоящее время высокоточным аналитическим методом контроля антибиотиков является метод высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией (далее — ВЭЖХ/МС–МС). Этот метод позволяет качественно и количественно определять остаточное количество антибиотиков как в сырье, так и в готовой продукции. Кроме того, с помощью указанного метода возможно разделение и идентификация различных действующих веществ, относящихся к одной группе. Данный метод имеет хорошую воспроизводимость и надежность, а также позволяет обнаруживать левомицетин в продукции животноводства на уровне 0,2 мкг/кг. По этой причине ВЭЖХ/МС–МС признан арбитражным методом определения антибиотиков в сырье и продукции животноводства в странах Евросоюза и России. Однако в Республике Беларусь метод ВЭЖХ/МС–МС для определения антибиотиков не применялся из-за отсутствия метрологически аттестованной методики.

Учитывая все вышесказанное, возникла необходимость разработки унифицированной методики определения остаточных количеств левомицетина во всех группах пищевых продуктов, в составе которых используется животноводческое сырье, методом ВЭЖХ/МС–МС, который бы соответствовал санитарно-гигиеническим требованиями Республики Беларусь, Таможенного союза и Евросоюза.

Сотрудниками Научно-практического центра гигиены разработана и внедрена в практику методика, которая позволяет контролировать содержание остаточных количеств левомицетина в различных видах пищевой продукции на уровне 0,2 мкг/кг. Метод определения основан на извлечении левомицетина органическим растворителем, очистке экстракта методом твердофазной экстракции и хроматографическом разделении с помощью высокоэффективной жидкостной хроматографии в обращенно-фазовом варианте с масс-спектрометрическим детектированием.

В настоящее время проводится определение содержания остаточных количеств левомицетина методом ВЭЖХ/МС–МС в сырье и продукции животноводства, а также в продуктах для детского питания на мясной и молочной основе. Внедрение данного метода позволило успешно вести контроль безопасности продукции, производимой на территории Беларуси, ввозимой из-за рубежа, а также предназначенной для поставки на экспорт.

Методика метрологически аттестована в БелГИМ и утверждена должным образом МВИ МН 4790–2013 «Определение содержания остаточных количеств левомицетина в сырье животного происхождения и пищевых продуктах методом ВЭЖХ/МС–МС».

Е. ШУПИЛОВА, научный сотрудник; О. ШУЛЯКОВСКАЯ, кандидат химических наук, заведующая лабораторией химии пищевых продуктов РУП «Научно-практический центр гигиены»

источник

В процессе инспекции объектов Русского Агропромышленного Треста (РАПТ), о чем мы писали ранее, у наших коллег экологов из Ростовской области возникла идея проверить продукцию треста на содержание вредных веществ. В результате Химико-Экологическому Центру были предоставлены образцы вырезки свинины и свиного фарша производс
тва РАПТ. Было заявлено, что образцы приобретены в фирменной сети Гурман, торгующей мясной продукцией Русского Агропромышленного Треста, мясом и мясными изделиями Донской Мясной Компании, входящей в трест, и перерабатывающей мясо, произведенное на свинофермах треста.

В продукции недобросовестных производителей мяса можно обнаружить патогенные микроорганизмы, остатки антибиотиков, гормональные препараты, различные виды токсинов и токсичные элементы. Патогенные микроорганизмы могут вызывать инфекционные заболевания. Некоторые гормональные препараты, токсины и токсичные элементы могут накапливаться в организме и впоследствии вызывать серьезные болезни.

В первую очередь было решено вначале проверить образцы на содержание веществ и микроорганизмов, которые наиболее часто встречаются в продукции недобросовестных производителей. Вырезку мы проверили на содержание левомицетина и антибиотиков тетрациклиновой группы, а также определили количество воды в мясе. Свиной фарш мы проверили на содержание листерии, сальмонеллы, бактерии группы кишечной палочки (БГКП), количества мезофильных аэробных и факультативно анаэробных микроорганизмов (КМАФАнМ) и токсичных элементов – мышьяка, ртути, кадмия, свинца. К сожалению, содержание интересующих нас больше всего гормональных препаратов, используемых для ускорения роста мышечной массы – тренболона, кленбутерола, зеранола, рактопамина и др. по техническим причинам определить не удалось, но мы надеемся, что в недалеком будущем сможем это сделать.

В мясной вырезке содержание воды в норме, левомицетина в норме, содержание тетрациклинов превышает ПДК в 1.2 раза. Превышение небольшое, но недопустимое.

Наличие в мясе остаточного количества антибиотиков, превышающего ПДК, может быть вызвано двумя причинами. Первая: перед забоем животные не должны получать антибиотики в течение определенного времени – чаще всего 30-40 дней, для того, чтобы они были за это время выведены из организма. В целях экономии производитель не выдерживает это время и забивает раньше. Вторая причина: антибиотики тетрациклиновой группы используются не только как антибактериальное средство, но и как хороший стимулятор роста, сокращающий время открома животных до достижения убойной массы. Производитель на своем сайте пишет, что свиньи выращиваются по самым передовым технологиям, что значительно сокращает себестоимость продукции и делают ее конкурентной. Может быть, в рамках этих передовых технологий на свинофермах РАПТа используют тетрациклины в качестве стимулятора роста.

Тетрациклины представляют собой группу антибиотиков широкого спектра антибактериального действия. Часто используются в животноводстве, в том числе для лечения бронхопневмонии, дизентерии, гастроэнтерита, алиментарной токсической диспепсии, сепсиса, инфекционных болезней мочеполовых путей, кокцидиоза, пуллороза, пастереллеза и других болезней. Кроме того, как уже было сказано, тетрациклины являются эффективными стимуляторами роста мышечной массы животных.

Существенно, что потребление человеком продуктов, содержащих остаточные количества тетрациклинов, угнетает микрофлору кишечника, снижает сопротивляемость организма и повышает устойчивость патогенных микроорганизмов, может спровоцировать дисбактериоз, вторичные грибковые инфекции, проявления аллергического характера, вызвать тошноту, рвоту, расстройства функции кишечника, изменения слизистых оболочек желудочно-кишечного тракта. Особенно чувствительны к препаратам тетрациклиновой группы беременные, дети раннего возраста, лица, страдающие болезнями печени и почек. Тетрациклины — вещества, обладающие тератогенным — уродующим плод – эффектом, поэтому они особенно опасны для беременных. Выраженные побочные явления, характерные для препаратов тетрациклиновой группы, привели к необходимости контроля их остаточного количества в продовольственном сырье и продуктах питания.

Согласно действующим нормативам, содержание тетрациклина в мясе и молочных продуктах не должно превышать 10 мкг/кг. Около десяти лет назад норма была в 10 раз выше, но по результатам исследований Главным Санитарным Врачом России было принято решение значительно снизить норму содержания.

В свином фарше содержание патогенных организмов, в том числе листерии и сальмонеллы не обнаружено, БККП (колиформы) не обнаружены, а вот КМАФАнМ превышает норму в полтора раза.

Определение КМАФАнМ — количества мезофильных аэробных и факультативно анаэробных микроорганизмов -относится к оценке численности группы санитарно-показательных микроорганизмов. В составе КМАФАнМ представлены различные таксономические группы микроорганизмов – бактерии, дрожжи, плесневые грибы. Их общая численность свидетельствует о санитарно-гигиеническом состоянии продукта, степени его обсемененности микрофлорой. Увеличение КМАФАнМ говорит о размножении микроорганизмов, в числе которых могут оказаться патогены и микроорганизмы, вызывающие порчу продукта (например, плесени). Повышенное КМАФАнМ представляет угрозу для здоровья людей из группы риска – детей, пожилых, больных. Одна и та же пища с повышенным КМАФАнМ здоровому человеку может не принести вреда, а у людей из группы риска может вызвать расстройство желудочно-кишечного тракта или спровоцировать другие недуги.

Превышение в полтора раза КМАФАнМ в свином фарше, произведенном РАПТом, может свидетельствовать о некачественном сырье, несоблюдении санитарных норм при приготовлении или нарушении условий хранения продукции.

Содержание мышьяка, ртути и кадмия оказалось в норме, а содержание свинца превышает ПДК в полтора-два раза (с учетом погрешности измерений).

Свинец является отравляющим веществом, накопление которого влияет на целый ряд систем организма и которое особенно вредно для детей младшего возраста. Свинец является канцерогеном и тератогеном (уродующим плод). Вызывает рак поджелудочной железы и других органов. Отравление малыми дозами соединений свинца приводит к следующим недугам: повышение артериального давления, развитие атеросклероза, нефропатия, прогрессирующая почечная недостаточность, развитие синдрома сатурнизма, ухудшение подвижности сперматозоидов и способности к оплодотворению, снижение потенции и другие заболевания. Свинец вызывает слабоумие у детей. По оценкам ВОЗ, воздействие свинца в детском возрасте является одним из факторов, вызывающих ежегодно порядка 600 000 новых случаев развития у детей нарушений умственной деятельности. По оценкам ВОЗ, воздействие свинца вызывает 143 000 смертей в год. В организме свинец попадает в мозг, печень, почки и кости. Со временем свинец накапливается в организме, особенно в зубах и костях. Не существует какого-либо известного уровня воздействия свинца, который считается безопасным.

Незначительные количества соединений свинца могли попасть в фарш случайным образом во время приготовления, либо, что представляется более вероятным, свинец попал в организмы выращиваемых животных вместе с кормом. Последнее прежде всего означает, что при откроме используются некачественные корма. Ведь если там есть свинец, значит, там могут быть и другие токсичные примеси, и не только неорганические.

Существует представление, которое редко кто подвергают сомнению, что некачественная пища является причиной болезней и сокращения жизни, и наоборот, кто потребляет качественную «здоровую» пищу, тот живет и дольше, и здоровее. «Нездоровость» некачественной пищи во многом определяется наличием в ней в небольших количествах вредных примесей – тяжелых металлов, токсинов, органических и неорганических канцерогенов. Если употребить такую пищу всего лишь несколько раз, никакого вреда здоровью не будет, так как токсичных веществ в ней слишком мало, чтобы вызвать нарушение организма. Но если употреблять такую пищу постоянно, а небогатые граждане, увы, именно так и вынуждены делать, альтернатива им недоступна, то микропримеси токсичных веществ годами накапливаются в тканях организма, и, достигая критического значения, начинают деструктивно воздействовать на организм. Вызывают прямо или провоцируют самые разнообразные заболевания, очень часто онкологические. Поэтому очень важно следить, что вредных примесей в продуктах питания было как можно меньше.

По результатам проведенных исследований Химико-Экологический Центр обратится в ростовское отделение Роспотребнадзора с просьбой провести проверку производимого Русским Агропромышленным Трестом мяса и мясной продукции на содержание вредных веществ.

Вывод. В представленных Химико-Экологическому Центру образцах свиной вырезки и свиного фарша выявлено небольшое превышение ПДК тетрациклинов, свинца и КМАФАнМ. Содержание левомицетина, листерии, сальмонеллы и бактерий круп кишечной палочки (колиформы) не обнаружено. Содержание ртути, мышьяка и кадмия в пределах нормы. Небольшие количества такого мяса опасности для здоровья не представляют, но есть такое мясо постоянно не рекомендуется.

источник

Сотрудниками РУП «Научно-практический центр гигиены» разработана новая сверхчувствительная методика определения содержания остаточных количеств левомицетина в сырье животного происхождения и пищевых продуктах методом ВЭЖХ/МС–МС.

Ее чувствительность составляет 0,2 мкг/кг.

Среди ряда веществ, контаминирующих продовольственное сырье и пищевые продукты, особое место занимают антибиотики. Данные вещества применяются при лечении больных животных, используются в качестве кормовых добавок и препаратов для стимуляции роста. Остаточные количества антибиотиков часто обнаруживают в молоке и молочных продуктах, в пищевых продуктах животного происхождения вследствие нарушения режима профилактики и лечения животных, а также в результате несоблюдения времени выдержки перед забоем.

Наличие антибиотика в пищевом сырье может изменить ход технологического процесса и повлиять на качество выпускаемой продукции. Кроме того, антибиотики могут специально вноситься в молоко производителями (фальсификация антибиотиками) для предотвращения преждевременного его скисания. Далее с продуктами питания они могут поступать в организм человека и оказывать неблагоприятное влияние на здоровье. Длительное использование в пищу продуктов, содержащих остаточное количество антибиотиков, может приводить к неблагоприятным для человека последствиям: возникновению аллергических реакций, дисбактериозов, анафилактического шока, увеличению антибиотикоустойчивости микрофлоры в организме, что впоследствии затрудняет выбор антибактериальных препаратов для лечения различных воспалительных заболеваний. Одним из таких антибиотиков является левомицетин.

Для экспортирования продукции за рубеж необходимо соблюдать требования международного ветеринарного кодекса и директив ЕС относительно выполнения ветеринарно-санитарных норм и правил при выращивании, производстве, переработке, хранении, транспортировании и реализации продукции. По этим причинам использование антибиотиков должно находиться под строгим санитарно-ветеринарным и гигиеническим контролем. Методы, применяемые для контроля наличия данных препаратов в продовольственном сырье и пищевых продуктах, можно разделить на микробиологические, физико-химические и иммунологические. Микробиологические методы (агародиффузный «чашечный» метод) определения основаны на измерении диаметра участков торможения роста бактерий, чувствительных к данному антибиотику (зон ингибиции). Эти методы являются сравнительно простыми и дешевыми, однако отличаются недостаточной чувствительностью, специфичностью и воспроизводимостью результатов.

Предпочтительным для контроля продовольственного сырья является иммуноферментный метод анализа, который обладает высокой чувствительностью, точностью, специфичностью, быстротой проведения анализа. Для определения левомицетина используют тест-системы типа «Ридаскрин Хлорамфинекол» и «МАХ SIGNAL Хлорамфинекол». Чувствительность этих методов в зависимости от анализируемого продукта составляет 0,01–0,25 мкг/кг (яйца, молоко, рыба, мясо). Данный метод широко используется для проведения скрининговых исследований. В случае установления фактов отсутствия антибиотиков в сырье с помощью иммуноферментного метода, обнаружение их в готовой продукции исключено. Недостатком указанного метода является то, что в настоящее время он не применим для готовой продукции. Это связано с тем, что производимые за рубежом тест-системы предназначены только для определения антибиотиков в продовольственном сырье, так как нормирование антибиотиков в странах Евросоюза проводится по сырью. Еще один недостаток — большой процент ложноположительных результатов. В случае получения положительного отклика, наличие антибиотика или его отсутствие в анализируемой продукции необходимо подтверждать другими методами анализа.

Методы высокоэффективной жидкостной хроматографии (ВЭЖХ) со спектрофотометрическим детектированием также используются для контроля содержания остаточных количеств левомицетина и его метаболитов в продовольственном сырье и пищевых продуктах. Однако чувствительность данных методов недостаточно велика и составляет 6,5—10,0 мкг/кг.

Также следует отметить, что ни один из вышеперечисленных методов не распространяется на пищевые продукты для детского и специализированного питания (для беременных и кормящих женщин, диетическое, спортивное), БАДы и пищевые добавки, содержащие продукты животноводства.

В странах Европы, Японии, США содержание хлорамфеникола регламентируется на уровне минимальной чувствительности метода, которая составляет 0,3 мкг/кг. В Беларуси в соответствии с требованиями СанПиГН до недавнего времени наличие левомицетина в мясе, мясных изделиях, молоке и молочных продуктах, продуктах для детского питания также не допускалось в пределах применяемого метода определения. В связи с введением в действие технического регламента Таможенного союза (ТР ТС 033/2013) содержание левомицетина в продуктах питания было четко регламентировано. Так, в сыром молоке, сыром обезжиренном молоке, сырых сливках и во всей молочной продукции содержание левомицетина (хлорамфеникола) не допускается более 0,01 мг/кг, а для продукции детского питания на молочной основе установлены еще более жесткие нормативы, при которых содержание левомицетина (хлорамфеникола) не должно превышать допустимого уровня 0,0003 мг/кг.

В настоящее время высокоточным аналитическим методом контроля антибиотиков является метод высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией (далее — ВЭЖХ/МС–МС). Этот метод позволяет качественно и количественно определять остаточное количество антибиотиков как в сырье, так и в готовой продукции. Кроме того, с помощью указанного метода возможно разделение и идентификация различных действующих веществ, относящихся к одной группе. Данный метод имеет хорошую воспроизводимость и надежность, а также позволяет обнаруживать левомицетин в продукции животноводства на уровне 0,2 мкг/кг. По этой причине ВЭЖХ/МС–МС признан арбитражным методом определения антибиотиков в сырье и продукции животноводства в странах Евросоюза и России. Однако в Республике Беларусь метод ВЭЖХ/МС–МС для определения антибиотиков не применялся из-за отсутствия метрологически аттестованной методики.

Учитывая все вышесказанное, возникла необходимость разработки унифицированной методики определения остаточных количеств левомицетина во всех группах пищевых продуктов, в составе которых используется животноводческое сырье, методом ВЭЖХ/МС–МС, который бы соответствовал санитарно-гигиеническим требованиями Республики Беларусь, Таможенного союза и Евросоюза.

Сотрудниками Научно-практического центра гигиены разработана и внедрена в практику методика, которая позволяет контролировать содержание остаточных количеств левомицетина в различных видах пищевой продукции на уровне 0,2 мкг/кг. Метод определения основан на извлечении левомицетина органическим растворителем, очистке экстракта методом твердофазной экстракции и хроматографическом разделении с помощью высокоэффективной жидкостной хроматографии в обращенно-фазовом варианте с масс-спектрометрическим детектированием.

В настоящее время проводится определение содержания остаточных количеств левомицетина методом ВЭЖХ/МС–МС в сырье и продукции животноводства, а также в продуктах для детского питания на мясной и молочной основе. Внедрение данного метода позволило успешно вести контроль безопасности продукции, производимой на территории Беларуси, ввозимой из-за рубежа, а также предназначенной для поставки на экспорт.

Методика метрологически аттестована в БелГИМ и утверждена должным образом МВИ МН 4790–2013 «Определение содержания остаточных количеств левомицетина в сырье животного происхождения и пищевых продуктах методом ВЭЖХ/МС–МС».

Е. ШУПИЛОВА, научный сотрудник; О. ШУЛЯКОВСКАЯ, кандидат химических наук, заведующая лабораторией химии пищевых продуктов РУП «Научно-практический центр гигиены»

источник

Большинство людей знакомы с антибиотиками, как лекарственными средствами. Сейчас, пожалуй и не найти человека, не принимавшего антибиотики ни разу за свою жизнь, будь то ребенок или взрослый.

Антибиотики изобрели более 70 лет назад, чтобы спасать человеческие жизни и бороться со смертельно опасными заболеваниями, но вместе с этим они являются сильнейшим аллергеном и могут нанести непоправимый вред организму.

В нынешнее время антибиотики нашли широкое применение в животноводстве, птицеводстве и при выращивании рыбы.

Антибиотиками лечат животных и птиц, как и людей, когда они заболевают. Антибиотики входят в состав так называемых «гормонов роста» для увеличения скорости выращивания скота или птицы. При неправильном их использовании они могут попасть в молоко, мясо и яйца.

Рыба и морепродукты – это категория продуктов, которые в прямом смысле просто купаются в антибиотиках при выращивании в искусственных условиях.

Антибиотики используют для термообработки, стерилизации, фильтрации с целью увеличения сроков хранения во многих технологических процессах при изготовлении продуктов питания, к которым относятся молоко и молочные продукты, мясо, яйца, курица, сыр, креветки, и даже мёд.

Таким образом, очевидно, что пищевыми продуктами, подвергающимися загрязнению антибиотиками, являются исключительно продукты животноводства, птицеводства и рыба, выращенная в искусственных водоемах. После применения антибиотиков в течение периода пока антибиотик не выведется из организма или его концентрация не снизится ниже допустимого предела, животное нельзя забивать с целью использования его частей или целиком в качестве пищи. В этот же период также запрещается использовать продукты от животного (например, молоко не может использоваться даже в переработку – должно быть просто уничтожено, как правило, выливают в землю, канализацию и пр.). В случае несоблюдения регламента по применению антибиотиков их можно обнаружить в мясе, молоке животных, куриных яйцах и пр. (по статистике их обнаруживают в 15-20 % всей продукции животного происхождения).

Для того чтобы вывести антибиотики из мяса до убоя животное надо выдержать 7−10 дней без препаратов. Важно знать, что если этот препарат остался в организме животного, то больше всего его в печени и почках.

Содержание антибиотиков снижается в результате термической обработки мяса животных и птицы, когда лекарственный препарат вместе с мышечным соком переходит в бульон, часть препарата разрушается под действием высоких температур. По сравнению с исходным количеством после варки остается от 5,9 % (гризин в мясе птицы) до 11,7 % (левомицетин в мясе птицы) антибиотиков в мышечной ткани. В бульон переходит около 70 % первоначального содержания антибиотиков. Приблизительно 20 % от исходного количества антибиотиков разрушается в результате проварки.

Кипячение, стерилизация, сквашивание практически не влияют на содержание антибиотиков в молоке и молочных продуктах. После кипячения в молоке остается от 90 до 95 % исходного количества антибиотиков, то есть разрушается от 5 до 10 % их количества. После стерилизации в молоке остается от 92 до 100 % исходного количества антибиотиков. Такие данные позволяют сделать выводы о непригодности параметров кипячения и стерилизации для разрушения антибиотиков в молоке.

В связи с тем, что группы применяемых антибиотиков у людей и животных в сельском хозяйстве одинаковы, остаточные количества антибиотиков в пищевых продуктах способствуют появлению устойчивых штаммов и у людей. Соответственно у людей, употребляющих такие продукты, развивается иммунитет к приему антибиотиков, и для получения ожидаемого эффекта при лечении требуются все более сильные препараты.

Под действием антибиотиков организм теряет способность самостоятельно противостоять различным инфекциям. И, кроме того, их широкое применение привело к появлению штаммов бактерий, устойчивых к этим препаратам, и, в конце концов, человек может оказаться незащищенным перед инфекциями и микроорганизмами.

Наличие антибиотиков в организме может вызвать сильные аллергические реакции, сопровождающиеся сильным зудом, высыпаниями, в редких случаях – отеком. Аллергический эффект проявляется даже в случае крайне низкого содержания антибиотиков в пищевых продуктах. За последние 40 лет в России в десятки раз возросло количество людей с аллергическими заболеваниями, особенно среди детей.

Длительное наличие антибиотиков в организме может вызвать раздражение слизистых оболочек желудка, обострение язвенных и предъязвенных состояний, нарушение баланса микрофлоры в кишечнике, нарушения в работе печени, почек, желчного пузыря, реакции со стороны нервной и кровеносной систем при индивидуальной непереносимости антибактериальных компонентов.

Антибиотики из организма кормящей женщины могут попасть в грудное молоко и вызвать ослабление иммунитета и проблемы со здоровьем у новорожденных детей.

Учитывая возможный риск нанесения вреда для здоровья человека, законодательством установлены нормативы содержания наиболее широко используемых антибиотиков в таких пищевых продуктах, как молоко и продукты переработки молока, мясо, в том числе мясо птицы, яйца и яйцепродукты: левомицетин, тетрациклиновая группа, стрептомицин, пенициллин, гризин, бацитрацин. Их содержание в пищевой продукции не допускается (в пределах, определенных соответствующими методиками), о чем важно знать потребителям.

Техническим регламентом Таможенного союза ТР ТС 021/2011 «О безопасности пищевой продукции» предусматривается, что непереработанное продовольственное (пищевое) сырье животного происхождения должно быть получено от продуктивных животных, которые не подвергались воздействию антибиотиков и других лекарственных средств для ветеринарного применения, введенных перед убоем до истечения сроков их выведения из организмов животных.

Управлением Роспотребнадзора по Красноярскому краю ежегодно в ходе проведения надзорных мероприятий осуществляется мониторинг содержания антибиотиков в продукции животного происхождения.

В результате проведенных лабораторных испытаний установлено, что удельный вес проб, не соответствующих требованиям нормативных документов по содержанию антибиотиков, на протяжении ряда лет остается стабильным и составляет соответственно в 2013 г. – 1,3 %, в 2014 г. и в 2015 г. в пробах готовой продукции антибиотики не выявлялись, вместе с тем из 87 отобранных проб в одной пробе сырого молока было выявлено превышение содержания антибиотика. Сырье, несоответствующее требованиям законодательства, было изъято из обращения.

Возрастающая устойчивость к антибиотикам достигает опасно высокого уровня по всему миру. Спектр применяемых препаратов в пищевой промышленности сейчас насчитывает несколько десятков видов антибиотиков и постоянно расширяется, соответственно содержание многих из них в пищевых продуктах еще не нормировано, и существующие сегодня меры контроля не могут определить содержание всех используемых антибиотиков в пищевых продуктах.

Это означает, что ответственность за соблюдением соответствующих правил по применению антибиотиков в сельском хозяйстве полностью лежит на производителе. Однако, в связи с неразвитой (низкой) культурой производства многие производители ради повышения рентабельности производства не соблюдают правила использования антибиотиков, т.к. по меньшей мере, это требует наличия персонала, обладающего специальными знаниями и навыками; соблюдения необходимых гигиенических условий на производстве, исключающих необходимость профилактики заболеваний при помощи антибиотиков; уничтожения пищевой продукции, содержащей антибиотики и др.

Поэтому Всемирная организация здравоохранения предупреждает о необходимости принятия срочных мер, а Международная организация по защите прав потребителей призывает убедить продовольственные компании изменить политику в отношении антибиотиков. Важную роль в этом процессе должны сыграть потребители.

Не смотря на наличие эффективных мер контроля за содержанием антибиотиков, потребитель должен помнить о том, что продукцию животного происхождения (мясо, молочные продукты, яйца) целесообразно приобретать у проверенных продавцов и на санкционированных рынках.

Реализуемая продукция животного происхождения должна сопровождаться документами, подтверждающими ее соответствие нормативным требованиям (непереработанная пищевая продукция животного происхождения – документом, подтверждающим проведение ветеринарно-санитарной экспертизы, переработанная пищевая продукция животного происхождения – декларацией о соответствии, мясная и молочная продукция для детского питания – свидетельством о государственной регистрации).

Приобретая пищевые продукты, в том числе животного происхождения, каждому потребителю следует обращать внимание на маркировку, которая должна содержать сведения о наименовании пищевой продукции; ее составе, о наименовании и месте нахождения изготовителя пищевой продукции, дате изготовления, сроке годности и условиях хранения продукта, а также рекомендации и (или) ограничения по использованию, единый знак обращения продукции на рынке государств — членов Таможенного союза.

Дополнительно следует обратить внимание, что на тушу, полутушу и четвертину мяса наносится оттиск ветеринарного клейма; допускается дополнительно наносить оттиск товароведческого клейма. В товаросопроводительной документации на неупакованные продукты убоя указывается следующая информация: вид мяса продуктивного животного, от которого получен продукт убоя, наименование продукта убоя, термическое состояние туш, полутуш, четвертин и отрубов («охлажденное», «замороженное»), анатомическая часть туши (для отрубов); продуктов убоя.

Уважаемые потребители! Таким образом, на сегодняшний день возможным выходом из сложившейся ситуации является покупка продукции животного происхождения (мясо скота, молочные продукты, яйца, мясо птицы) у проверенных надежных производителей после проведения ветеринарно-санитарной экспертизы животноводческого сырья.

Воздержитесь от покупки продуктов животноводства, птицеводства, рыбоводства неприглядного внешнего вида и сомнительного качества, производителем которых являются неизвестные фирмы.

Воздержитесь от покупки продукции в неприспособленных для этого помещениях и местах: во дворе, из багажника машин, в подъезде и т.п.

источник